
KS57C2302/C2304/P2304 MICROCONTROLLER PRODUCT OVERVIEW

1-1

1 PRODUCT OVERVIEW

OVERVIEW

The KS57C2302/C2304 single-chip CMOS microcontroller has been designed for high performance using
Samsung's newest 4-bit CPU core, SAM47 (Samsung Arrangeable Microcontrollers).

With features such as, LCD direct drive capability, 8-bit timer/counter, and watch timer, the KS57C2302/C2304
offers an excellent design solution for a wide variety of applications that require LCD functions.

Up to 16 pins of the 64-pin QFP package, it can be dedicated to I/O. Four vectored interrupts provide fast
response to internal and external events. In addition, the KS57C2302/C2304 's advanced CMOS technology
provides for low power consumption and a wide operating voltage range.

OTP

The KS57C2302/C2304 microcontroller is also available in OTP (One Time Programmable) version, KS57P2304
. The KS57P2304 microcontroller has an on-chip 4-Kbyte one-time-programmable EPROM instead of masked
ROM. The KS57P2304 is comparable to KS57C2302/C2304, both in function and in pin configuration.

PRODUCT OVERVIEW KS57C2302/C2304/P2304 MICROCONTROLLER

1-2

FEATURES

Memory

— 288 × 4-bit RAM

— 2048 × 8-bit ROM (KS57C2302)

— 4096 × 8-bit ROM (KS57C2304)

I/O Pins

— Input only: 4 pins

— I/O: 12 pins

— Output: 8 pins sharing with segment driver
outputs

LCD Controller/Driver

— Maximum 16-digit LCD direct drive capability

— 32 segment, 4 common pins

— Display modes: Static, 1/2 duty (1/2 bias)
1/3 duty (1/2 or 1/3 bias), 1/4 duty (1/3 bias)

8-Bit Basic Timer

— Programmable interval timer

— Watchdog timer

8-Bit Timer/Counter

— Programmable 8-bit timer

— External event counter

— Arbitrary clock frequency output

Watch Timer

— Real-time and interval time measurement

— Four frequency outputs to BUZ pin

— Clock source generation for LCD

Bit Sequential Carrier

— Support 16-bit serial data transfer in arbitrary
format

Interrupts

— Two internal vectored interrupts

— Two external vectored interrupts

— Two quasi-interrupts

Memory-Mapped I/O Structure

— Data memory bank 15

Two Power-Down Modes

— Idle mode (only CPU clock stops)

— Stop mode (main or sub system oscillation stops)

Oscillation Sources

— Crystal, ceramic, or RC for main system clock

— Crystal or external oscillator for subsystem clock

— Main system clock frequency: 4.19 MHz (typical)

— Subsystem clock frequency: 32.768 kHz

— CPU clock divider circuit (by 4, 8, or 64)

Instruction Execution Times

— 0.95, 1.91, 15.3 µs at 4.19 MHz (main)

— 122 µs at 32.768 kHz (subsystem)

Operating Temperature

— – 40 °C to 85 °C

Operating Voltage Range

— 2.0 V to 5.5 V at 4.19 MHz

— 1.8 V to 5.5 V at 3 MHz

Package Type

— 64-pin QFP

KS57C2302/C2304/P2304 MICROCONTROLLER PRODUCT OVERVIEW

1-3

BLOCK DIAGRAM

P6.0–P6.3 /
KS0–KS3

ARITHMETIC
AND

LOGIC UNIT

INTERRUPT
CONTROL

BLOCK

INSTRUCTION
REGISTER

PROGRAM
COUNTER

PROGRAM
STATUS WORD

288 x 4-BIT
DATA

MEMORY

2/4 K BYTE
PROGRAM
 MEMORY

STACK
POINTER

INSTRUCTION DECODER

CLOCK

RESET
Xin

XTin

INTERNAL
INTERRUPTS

8-BIT TIMER/
COUNTER 0

I/O PORT 6

INT0, INT1,INT2

BASIC
TIMER

WATCH
TIMER

BIAS
VLC0-VLC2
LCDCK/P3.0
LCDSY/P3.1
COM0-COM3
SEG0-SEG23

P8.0-P8.7/
SEG24-SEG31

LCD DRIVER/
CONTROLLER

P1.0 / INT0
P1.1 / INT1
P1.2 / INT2
P1.3 / TCL0

INPUT
PORT 1

P2.0 / TCLO0
P2.1
P2.2 / CLO
P2.3 / BUZ

I/O PORT 2

P3.0 / LCDCK
P3.1 / LCDSY
P3.2
P3.3

I/O PORT 3

P8.0–P8.7
SEG24–SEG31

OUTPUT
PORT 8

P2.3/BUZ

Xout
XTout

P1.3/TCL0

P2.0/TCLO0

Figure 1-1. KS57C2302/C2304 Simplified Block Diagram

PRODUCT OVERVIEW KS57C2302/C2304/P2304 MICROCONTROLLER

1-4

PIN ASSIGNMENTS

SEG13
SEG14
SEG15
SEG16

SEG17
SEG18
SEG19
SEG20
SEG21
SEG22

SEG23
SEG24 / P8.0
SEG25 / P8.1
SEG26 / P8.2
SEG27 / P8.3

SEG28 / P8.4
SEG29 / P8.5
SEG30 / P8.6
SEG31 / P8.7

51
50
49
48

47
46
45
44
43
42

41
40
39
38
37

36
35
34
33

64

63

62

61

60

59

58

57

56

55

54

53

52

1
2
3
4
5

6
7
8
9
10
11

12
13
14
15
16

17
18
19

20

21

22

23

24

25

26

27

28

29

30

31

32

KS57C2302
KS57C2304

(TOP VIEW)

COM0
COM1
COM2
COM3
BIAS

VLC0
VLC1
VLC2
VDD
 VSS
Xout

Xin
TEST
XTin

XTout

RESET

P1.0/INT0
P1.1/INT1
P1.2/INT2

P
1.

3
/ T

C
L0

P

2.
0

/ T
C

LO
0

P
2.

1
P

2.
2

/ C
LO

P

2.
3

/ B
U

Z

P
3.

0
/ L

C
D

C
K

P
3.

1
/ L

C
D

S
Y

P

3.
2

P
3.

3
P

6.
0

/ K
S

0
P

6.
1

/ K
S

1
P

6.
2

/ K
S

2

P
6.

3
/ K

S
3

S
E

G
0

S
E

G
1

S
E

G
2

S
E

G
3

S
E

G
4

S
E

G
5

S
E

G
6

S
E

G
7

S
E

G
8

S
E

G
9

S
E

G
10

S

E
G

11

S
E

G
12

Figure 1-2. KS57C2302/C2304 64-QFP Pin Assignment

KS57C2302/C2304/P2304 MICROCONTROLLER PRODUCT OVERVIEW

1-5

PIN DESCRIPTIONS

Table 1-1. KS57C2302/C2304 Pin Descriptions

Pin Name Pin
Type

Description Number Share
Pin

Reset
Value

Circuit
Type

P1.0
P1.1
P1.2
P1.3

I 4-bit input port.
1-bit or 4-bit read and test is possible.
4-bit pull-up resistors are software
assignable.

17
18
19
20

INT0
INT1
INT2
TCL0

Input A-4

P2.0
P2.1
P2.2
P2.3

I/O 4-bit I/O port.
1-bit and 4-bit read/write and test is
possible.
4-bit pull-up resistors are software
assignable.

21
22
23
24

TCLO0
–

CLO
BUZ

Input D

P3.0
P3.1
P3.2
P3.3

I/O 4-bit I/O port.
1-bit and 4-bit read/write and test is
possible.
Each individual pin can be specified as
input or output. 4-bit pull-up resistors are
software assignable.

25
26
27
28

LCDCK
LCDSY

Input D

P6.0–P6.3 I/O 4-bit I/O ports. Pins are individually
software configurable as input or output.
1-bit and 4-bit read/write and test is
possible. 4-bit pull-up resistors are
software assignable.

29–32 KS0–KS3 Input D

P8.0–P8.7 O Output port for 1-bit data (for use as
CMOS driver only)

40–33 SEG24–
SEG31

Output H-1

SEG0–SEG23 O LCD segment signal output 64–41 – Output H

SEG24–SEG31 O LCD segment signal output 40–33 P8.0–P8.7 Output H-1

COM0–COM3 O LCD common signal output 1–4 – Output H

VLC0–VLC2 – LCD power supply.
Built-in voltage dividing resistors

6–8 – – –

BIAS – LCD power control 5 – – –

LCDCK I/O LCD clock output for display expansion 25 P3.0 Input D

PRODUCT OVERVIEW KS57C2302/C2304/P2304 MICROCONTROLLER

1-6

Table 1-1. KS57P2304 Pin Descriptions (Continued)

Pin Name Pin
Type

Description Number Share
Pin

Reset
Value

Circuit
Type

LCDSY I/O LCD synchronization clock output for
LCD display expansion

26 P3.1 Input D

TCL0 I External clock input for timer/counter 0 20 P1.3 Input A-4

TCLO0 I/O Timer/counter 0 clock output 21 P2.0 Input D

INT0
INT1

I External interrupt. The triggering edge
for INT0 and INT1 is selectable. Only
INT0 is synchronized with the system
clock.

17
18

P1.0
P1.1

Input A-4

INT2 I Quasi-interrupt with detection of rising
edge signals.

19 P1.2 Input A-4

KS0–KS3 I/O Quasi-interrupt input with falling edge
detection.

29–32 P6.0–P6.3 Input D

CLO I/O CPU clock output 23 P2.2 Input D

BUZ I/O 2, 4, 8 or 16 kHz frequency output for
buzzer sound with 4.19 MHz main
system clock or 32.768 kHz subsystem
clock.

24 P2.3 Input D

XIN, XOUT – Crystal, ceramic or RC oscillator pins for
main system clock. (For external clock
input, use XIN and input XIN’s reverse
phase to XOUT)

12,11 – – –

XTIN, XTOUT – Crystal oscillator pins for subsystem
clock. (For external clock input, use XTIN
and input XTIN’s reverse phase to
XTOUT)

14,15 – – –

VDD – Main power supply 9 – – –

VSS – Ground 10 – – –

RESET – Reset signal 16 – Input B

TEST – Test signal input (must be connected to
VSS)

13 – – –

NOTE: Pull-up resistors for all I/O ports automatically disabled if they are configured to output mode.

KS57C2302/C2304/P2304 MICROCONTROLLER PRODUCT OVERVIEW

1-7

PIN CIRCUIT DIAGRAMS

VDD

P-CHANNEL

IN

N-CHNNEL

Figure 1-3. Pin Circuit Type A

SCHMITT TRIGGER

VDD

IN

P-CHANNEL

PULL-UP
RESISTOR

RESISTOR
ENABLE

Figure 1-4. Pin Circuit Type A-4 (P1)

VDD

P-CHANNEL
DATA

OUTPUT
DISABLE

N-CHANNEL

OUT

Figure 1-5. Pin Circuit Type C

P-CHANNEL

PULL-UP
RESISTOR

RESISTOR
ENABLE

DATA

OUTPUT
DISABLE

CIRCUIT TYPE A

I/O

VDD

CIRCUIT
TYPE C

Figure 1-6. Pin Circuit Type D (P2, P3, and P6)

PRODUCT OVERVIEW KS57C2302/C2304/P2304 MICROCONTROLLER

1-8

VLC0

VLC1

LCD SEGMENT/
COMMON DATA

VLC2

OUT

 Figure 1-7. Pin Circuit Type H (SEG/COM)

VLC0

VLC1

LCD SEGMENT/
& PORT 8 DATA

VLC2

VDD

OUT

Figure 1-8. Pin Circuit Type H-1 (P8)

IN

SCHMITT TRIGGER

VDD

Figure 1-9. Pin Circuit Type B (RESET)

KS57C2302/C2304/P2304 MICROCONTROLLER ADDRESS SPACES

2-1

2 ADDRESS SPACES

PROGRAM MEMORY (ROM)

OVERVIEW

ROM maps for KS57C2302/C2304 devices are mask programmable at the factory. KS57C2302 has 2K × 8-bit
program memory and KS57C2304 has 4K × 8-bit program memory, aside from the differences in the ROM size
the two products are identical in other features. In its standard configuration, the device's 4,096 × 8-bit program
memory has four areas that are directly addressable by the program counter (PC):

— 12-byte area for vector addresses

— 96-byte instruction reference area

— 20-byte general-purpose area

— 1920-byte general-purpose area (KS57C2302)
3968-byte general-purpose area (KS57C2304)

General-Purpose Program Memory

Two program memory areas are allocated for general-purpose use: One area is 20 bytes in size and the other is
1,920 bytes (KS57C2302) or 3,968 bytes (KS57C2304).

Vector Addresses

A 12-byte vector address area is used to store the vector addresses required to execute system resets and
interrupts. Start addresses for interrupt service routines are stored in this area, along with the values of the
enable memory bank (EMB) and enable register bank (ERB) flags that are used to set their initial value for the
corresponding service routines. The 12-byte area can be used alternately as general-purpose ROM.

REF Instructions

Locations 0020H–007FH are used as a reference area (look-up table) for 1-byte REF instructions. The REF
instruction reduces the byte size of instruction operands. REF can reference one 2-byte instruction, two 1-byte
instructions, and 3-byte instructions which are stored in the look-up table. Unused look-up table addresses can be
used as general-purpose ROM.

Table 2-1. Program Memory Address Ranges

ROM Area Function Address Ranges Area Size (in Bytes)

Vector address area 0000H–000BH 12

General-purpose program memory 000CH–001FH 20

REF instruction look-up table area 0020H–007FH 96

General-purpose program memory 0080H–7FFH (KS57C2302)
0080H–0FFFH (KS57C2304)

1920 (KS57C2302)
3968 (KS57C2304)

ADDRESS SPACES KS57C2302/C2304/P2304 MICROCONTROLLER

2-2

GENERAL-PURPOSE MEMORY AREAS

The 20-byte area at ROM locations 000CH–001FH and the 3,968-byte area at ROM locations 0080H–0FFFH are
used as general-purpose program memory. Unused locations in the vector address area and REF instruction
look-up table areas can be used as general-purpose program memory. However, care must be taken not to
overwrite live data when writing programs that use special-purpose areas of the ROM.

VECTOR ADDRESS AREA

The 12-byte vector address area of the ROM is used to store the vector addresses for executing system resets
and interrupts. The starting addresses of interrupt service routines are stored in this area, along with the enable
memory bank (EMB) and enable register bank (ERB) flag values that are needed to initialize the service routines.
12-byte vector addresses are organized as follows:

To set up the vector address area for specific programs, use the instruction VENTn. The programming tips on the
next page explain how to do this.

VECTOR ADDRESS AREA
(12 Bytes)

GENERAL-PURPOSE AREA
(20 Bytes)

INSTRUCTION
REFERENCE

AREA

GENERAL-PURPOSE
AREA

(1,920 Bytes
3,968 Bytes)

7FFH
0FFFH

0080H

007FH

0020H

001FH

000CH
000BH

0000H

Figure 2-1. ROM Address Structure

7 6 5 4 3 2 1 0

RESET

INTB

INT0

INT1

INTT0

0000H

0002H

0004H

0006H

0008H

000AH

Reserved

Figure 2-2. Vector Address Structure

EMB ERB 0 0 PC11 PC10 PC9 PC8

PC7 PC6 PC5 PC4 PC3 PC2 PC1 PC0

KS57C2302/C2304/P2304 MICROCONTROLLER ADDRESS SPACES

2-3

++ PROGRAMMING TIP — Defining Vectored Interrupts

The following examples show you several ways you can define the vectored interrupt and instruction reference
areas in program memory:

1. When all vector interrupts are used:

ORG 0000H

VENT0 1,0,RESET ; EMB ← 1, ERB ← 0; Jump to RESET address
VENT1 0,0,INTB ; EMB ← 0, ERB ← 0; Jump to INTB address
VENT2 0,0,INT0 ; EMB ← 0, ERB ← 0; Jump to INT0 address
VENT3 0,0,INT1 ; EMB ← 0, ERB ← 0; Jump to INT1 address

ORG 000AH

VENT5 0,0,INTT0 ; EMB ← 0, ERB ← 0; Jump to INTT0 address

2. When a specific vectored interrupt such as INT0, and INTT0 is not used, the unused vector interrupt locations
must be skipped with the assembly instruction ORG so that jumps will address the correct locations:

ORG 0000H

VENT0 1,0,RESET ; EMB ← 1, ERB ← 0; Jump to RESET address
VENT1 0,0,INTB ; EMB ← 0, ERB ← 0; Jump to INTB address
ORG 0006H ; INT0 interrupt not used
VENT3 0,0,INT1 ; EMB ← 0, ERB ← 0; Jump to INT1 address

ORG 0010H

3. If an INT0 interrupt is not used and if its corresponding vector interrupt area is not fully utilized, or if it is not
written by a ORG instruction as in Example 2, a CPU malfunction will occur:

ORG 0000H

VENT0 1,0,RESET ; EMB ← 1, ERB ← 0; Jump to RESET address
VENT1 0,0,INTB ; EMB ← 0, ERB ← 0; Jump to INTB address
VENT3 0,0,INT1 ; EMB ← 0, ERB ← 0; Jump to INT0 address
VENT5 0,0,INTT0 ; EMB ← 0, ERB ← 0; Jump to INT1 address

ORG 0010H

General-purpose ROM area

In this example, when an INT1 interrupt is generated, the corresponding vector area is not VENT3 INT1, but
VENT5 INTT0. This causes an INT1 interrupt to jump incorrectly to the INTT0 address and causes a CPU
malfunction to occur.

ADDRESS SPACES KS57C2302/C2304/P2304 MICROCONTROLLER

2-4

INSTRUCTION REFERENCE AREA

Using 1-byte REF instructions, you can easily reference instructions with larger byte sizes that are stored in
addresses 0020H–007FH of program memory. This 96-byte area is called the REF instruction reference area, or
look-up table. Locations in the REF look-up table may contain two one-byte instructions, a single two-byte
instruction, or three-byte instruction such as a JP (jump) or CALL. The starting address of the instruction you are
referencing must always be an even number. To reference a JP or CALL instruction, it must be written to the
reference area in a two-byte format: for JP, this format is TJP; for CALL, it is TCALL.

By using REF instructions to execute instructions larger than one byte, you can improve program execution time
considerably by reducing the number of program steps. In summary, there are three ways you can use the REF
instruction:

— Using the 1-byte REF instruction to execute one 2-byte or two 1-byte instructions,

— Branching to any location by referencing a branch instruction stored in the look-up table,

— Calling subroutines at any location by referencing a call instruction stored in the look-up table.

++ PROGRAMMING TIP — Using the REF Look-Up Table

Here is one example of how to use the REF instruction look-up table:

ORG 0020H
JMAIN TJP MAIN ; 0, MAIN
KEYCK BTSF KEYFG ; 1, KEYFG CHECK
WATCH TCALL CLOCK ; 2, CALL CLOCK
INCHL LD @HL,A ; 3, (HL) ← A

INCS HL
•
•
•

ABC LD EA,#00H ; 47, EA ← #00H
ORG 0080H

MAIN NOP
NOP
•
•
•
REF KEYCK ; BTSF KEYFG (1-byte instruction)
REF JMAIN ; KEYFG = 1, jump to MAIN (1-byte instruction)
REF WATCH ; KEYFG = 0, CALL CLOCK (1-byte instruction)
REF INCHL ; LD @HL,A

; INCS HL
REF ABC ; LD EA,#00H (1-byte instruction)
•
•
•

KS57C2302/C2304/P2304 MICROCONTROLLER ADDRESS SPACES

2-5

DATA MEMORY (RAM)

OVERVIEW

In its standard configuration, the 288 x 4-bit data memory has three areas:

— 32 × 4-bit working register area in bank 0

— 224 × 4-bit general-purpose area in bank 0 which is also used as the stack area

— 32 × 4-bit area for LCD data in bank 1

— 128 × 4-bit area in bank 15 for memory-mapped I/O addresses

To make it easier to reference, the data memory area has three memory banks — bank 0, bank 1, and bank 15.
The select memory bank instruction (SMB) is used to select the bank you want to select as working data memory.
Data stored in RAM locations are 1-, 4-, and 8-bit addressable. One exception is the LCD data register area,
which is 1-bit and 4-bit addressable only.

Initialization values for the data memory area are not defined by hardware and must therefore be initialized by
program software following power reset. However, when RESET signal is generated in power-down mode, the data
memory contents are held.

ADDRESS SPACES KS57C2302/C2304/P2304 MICROCONTROLLER

2-6

GENERAL-PURPOSE
REGISTERS AND

STACK AREA
(224 x 4 Bits)

WORKING REGISTERS
(32 x 4 Bits)

LCD DATA REGISTERS
(32 x 4 Bits)

MEMORY-MAPPED I/O
AEERESS REGISTERS

(128 x 4 Bits)

000H

01FH
020H

0FFH

FFFH

1FFH

F80H
~~

BANK 0

BANK 1

BANK 15

~~

1E0H

Figure 2-3. Data Memory (RAM) Map

KS57C2302/C2304/P2304 MICROCONTROLLER ADDRESS SPACES

2-7

Memory Banks 0, 1, and 15

Bank 0 (000H–0FFH) The lowest 32 nibbles of bank 0 (000H–01FH) are used as working registers;
the next 224 nibbles (020H–0FFH) can be used both as stack area and as
general-purpose data memory. Use the stack area for implementing subroutine
calls and returns, and for interrupt processing.

Bank 1 (1E0H–1FFH) 32 nibbles of bank 1 are used as display registers or general purpose memory.

Bank 15 (F80H–FFFH) The microcontroller uses bank 15 for memory-mapped peripheral I/O. Fixed
RAM locations for each peripheral hardware address are mapped into this
area.

Data Memory Addressing Modes

The enable memory bank (EMB) flag controls the addressing mode for data memory banks 0, 1, or 15. When the
EMB flag is logic zero, the addressable area is restricted to specific locations, depending on whether direct or
indirect addressing is used. With direct addressing, you can access locations 000H–07FH of bank 0 and bank 15.
With indirect addressing, only bank 0 (000H–0FFH) can be accessed. When the EMB flag is set to logic one, all
three data memory banks can be accessed according to the current SMB value.

For 8-bit addressing, two 4-bit registers are addressed as a register pair. Also, when using 8-bit instructions to
address RAM locations, remember to use the even-numbered register address as the instruction operand.

Working Registers

The RAM working register area in data memory bank 0 is further divided into four register banks (bank 0, 1, 2,
and 3). Each register bank has eight 4-bit registers and paired 4-bit registers are 8-bit addressable.

Register A is used as a 4-bit accumulator and register pair EA as an 8-bit extended accumulator. The carry flag
bit can also be used as a 1-bit accumulator. Register pairs WX, WL, and HL are used as address pointers for
indirect addressing. To limit the possibility of data corruption due to incorrect register addressing, it is advisable
to use register bank 0 for the main program and banks 1, 2, and 3 for interrupt service routines.

LCD Data Register Area

Bit values for LCD segment data are stored in data memory bank 1. Register locations in this area that are not
used to store LCD data can be assigned to general-purpose use.

ADDRESS SPACES KS57C2302/C2304/P2304 MICROCONTROLLER

2-8

Table 2-2. Data Memory Organization and Addressing

Addresses Register Areas Bank EMB Value SMB Value

000H–01FH Working registers 0 0, 1 0

020H–0FFH Stack and general-purpose registers

1E0H–1FFH LCD Data registers 1 1 1

F80H–FFFH I/O-mapped hardware registers 15 0, 1 15

++ PROGRAMMING TIP — Clearing Data Memory Banks 0 and 1

Clear banks 0 and 1 of the data memory area:

BITS EMB
RAMCLR SMB 1 ; RAM (1E0H–1FFH) clear

LD HL, #0E0H
LD A, #0H

RMCL1 LD @HL, A
INCS HL
JR RMCL1

SMB 0 ; RAM (010H–0FFH) clear
LD HL, #10H

RMCL0 LD @HL, A
INCS HL
JR RMCL0

KS57C2302/C2304/P2304 MICROCONTROLLER ADDRESS SPACES

2-9

WORKING REGISTERS

Working registers, mapped to RAM address 000H–01FH in data memory bank 0, are used to temporarily store
intermediate results during program execution, as well as pointer values used for indirect addressing. Unused
registers may be used as general-purpose memory. Working register data can be manipulated as 1-bit units, 4-bit
units or, using paired registers, as 8-bit units.

000H

001H

002H

003H

004H

005H

006H

007H

00FH
010H

017H
018H

01FH

008H

A

E

L

H

X

W

Z

Y

A ... Y
REGISTER

BANK 1

REGISTER
BANK 2

REGISTER
BANK 3

A ... Y

A ... Y

WORKING
REGISTER

BANK 0

DATA
MEMORY
BANK 0

Figure 2-4. Working Register Map

ADDRESS SPACES KS57C2302/C2304/P2304 MICROCONTROLLER

2-10

Working Register Banks

For addressing purposes, the working register area is divided into four register banks — bank 0, bank 1, bank 2,
and bank 3. Any one of these banks can be selected as the working register bank by the register bank selection
instruction (SRB n) and by setting the status of the register bank enable flag (ERB).

Generally, working register bank 0 is used for the main program, and banks 1, 2, and 3 for interrupt service
routines. Following this convention helps to prevent possible data corruption during program execution due to
contention in register bank addressing.

Table 2-3. Working Register Organization and Addressing

ERB SRB Settings Selected Register Bank
Setting 3 2 1 0

0 0 0 – – Always set to bank 0

0 0 Bank 0

1 0 0 0 1 Bank 1

1 0 Bank 2

1 1 Bank 3

Paired Working Registers

Each of the register banks is subdivided into eight 4-bit registers. These registers, named Y, Z, W, X, H, L, E, and
A, can either be manipulated individually using 4-bit instructions, or together as register pairs for 8-bit data
manipulation.

The names of the 8-bit register pairs in each register bank are EA, HL, WX, YZ, and WL. Registers A, L, X, and Z
always become the lower nibble when registers are addressed as 8-bit pairs. This makes a total of eight 4-bit
registers or four 8-bit double registers in each of the four working register banks.

Y Z

W X

H L

E A

(MSB) (LSB) (MSB) (LSB)

Figure 2-5. Register Pair Configuration

KS57C2302/C2304/P2304 MICROCONTROLLER ADDRESS SPACES

2-11

Special-Purpose Working Registers

Register A is used as a 4-bit accumulator and double register EA as an 8-bit accumulator. The carry flag can also
be used as a 1-bit accumulator.

8-bit double registers WX, WL, and HL are used as data pointers for indirect addressing. When the HL register
serves as a data pointer, the instructions LDI, LDD, XCHI, and XCHD can make very efficient use of working
registers as program loop counters by letting you transfer a value to the L register and increment or decrement it
using a single instruction.

C

A

EA

1−BIT
ACCUMULATOR

4−BIT
ACCUMULATOR

8−BIT
ACCUMULATOR

Figure 2-6. 1-Bit, 4-Bit, and 8-Bit Accumulator

Recommendation for Multiple Interrupt Processing

If more than four interrupts are being processed at one time, you can avoid possible loss of working register data
by using the PUSH RR instruction to save register contents to the stack before the service routines are executed
in the same register bank. When the routines have executed successfully, you can restore the register contents
from the stack to working memory using the POP instruction.

ADDRESS SPACES KS57C2302/C2304/P2304 MICROCONTROLLER

2-12

++ PROGRAMMING TIP — Selecting the Working Register Area

The following examples show the correct programming method for selecting working register area:

1. When ERB = "0":

VENT2 1,0,INT0 ; EMB ← 1, ERB ← 0, Jump to INT0 address

INT0 PUSH SB ; PUSH current SMB, SRB
SRB 2 ; Instruction does not execute because ERB = "0"
PUSH HL ; PUSH HL register contents to stack
PUSH WX ; PUSH WX register contents to stack
PUSH YZ ; PUSH YZ register contents to stack
PUSH EA ; PUSH EA register contents to stack
SMB 0
LD EA,#00H
LD 80H,EA
LD HL,#40H
INCS HL
LD WX,EA
LD YZ,EA
POP EA ; POP EA register contents from stack
POP YZ ; POP YZ register contents from stack
POP WX ; POP WX register contents from stack
POP HL ; POP HL register contents from stack
POP SB ; POP current SMB, SRB
IRET

The POP instructions execute alternately with the PUSH instructions. If an SMB n instruction is used in an
interrupt service routine, a PUSH and POP SB instruction must be used to store and restore the current SMB
and SRB values, as shown in Example 2 below.

2. When ERB = "1":

VENT2 1,1,INT0 ; EMB ← 1, ERB ← 1, Jump to INT0 address

INT0 PUSH SB ; Store current SMB, SRB
SRB 2 ; Select register bank 2 because of ERB = "1"
SMB 0
LD EA,#00H
LD 80H,EA
LD HL,#40H
INCS HL
LD WX,EA
LD YZ,EA
POP SB ; Restore SMB, SRB
IRET

KS57C2302/C2304/P2304 MICROCONTROLLER ADDRESS SPACES

2-13

STACK OPERATIONS

STACK POINTER (SP)

The stack pointer (SP) is an 8-bit register that stores the address used to access the stack, an area of data
memory set aside for temporary storage of data and addresses. The SP can be read or written by 8-bit control
instructions. When addressing the SP, bit 0 must always remain cleared to logic zero.

F80H SP3 SP2 SP1 "0"

F81H SP7 SP6 SP5 SP4

There are two basic stack operations: writing to the top of the stack (push), and reading from the top of the stack
(pop). A push decrements the SP and a pop increments it so that the SP always points to the top address of the
last data to be written to the stack.

The program counter contents and program status word (PSW) are stored in the stack area prior to the execution
of a CALL or a PUSH instruction, or during interrupt service routines. Stack operation is a LIFO (Last In-First Out)
type. The stack area is located in general-purpose data memory bank 0.

During an interrupt or a subroutine, the PC value and the PSW are saved to the stack area. When the routine has
completed, the stack pointer is referenced to restore the PC and PSW, and the next instruction is executed.

The SP can address stack registers in bank 0 (addresses 000H–0FFH) regardless of the current value of the
enable memory bank (EMB) flag and the select memory bank (SMB) flag. Although general-purpose register
areas can be used for stack operations, be careful to avoid data loss due to simultaneous use of the same
register(s).

Since the reset value of the stack pointer is not defined in firmware, we recommend that you initialize the stack
pointer by program code to location 00H. This sets the first register of the stack area to 0FFH.

NOTE

A subroutine call occupies six nibbles in the stack; an interrupt requires six. When subroutine nesting or
interrupt routines are used continuously, the stack area should be set in accordance with the maximum
number of subroutine levels. To do this, estimate the number of nibbles that will be used for the
subroutines or interrupts and set the stack area correspondingly.

++ PROGRAMMING TIP — Initializing the Stack Pointer

To initialize the stack pointer (SP):

1. When EMB = "1":

SMB 15 ; Select memory bank 15
LD EA,#00H ; Bit 0 of SP is always cleared to "0"
LD SP,EA ; Stack area initial address (0FFH) ← (SP) – 1

2. When EMB = "0":

LD EA,#00H
LD SP,EA ; Memory addressing area (00H–7FH, F80H–FFFH)

ADDRESS SPACES KS57C2302/C2304/P2304 MICROCONTROLLER

2-14

PUSH OPERATIONS

Three kinds of push operations reference the stack pointer (SP) to write data from the source register to the
stack: PUSH instructions, CALL instructions, and interrupts. In each case, the SP is decreased by a number
determined by the type of push operation and then points to the next available stack location.

PUSH Instructions

A PUSH instruction references the SP to write two 4-bit data nibbles to the stack. Two 4-bit stack addresses are
referenced by the stack pointer: one for the upper register value and another for the lower register. After the
PUSH has executed, the SP is decreased by two and points to the next available stack location.

CALL Instructions

When a subroutine call is issued, the CALL instruction references the SP to write the PC's contents to six 4-bit
stack locations. Current values for the enable memory bank (EMB) flag and the enable register bank (ERB) flag
are also pushed to the stack. Since six 4-bit stack locations are used per CALL, you may nest subroutine calls up
to the number of levels permitted in the stack.

Interrupt Routines

An interrupt routine references the SP to push the contents of the PC and the program status word (PSW) to the
stack. Six 4-bit stack locations are used to store this data. After the interrupt has executed, the SP is decreased
by six and points to the next available stack location. During an interrupt sequence, subroutines may be nested
up to the number of levels which are permitted in the stack area.

SP – 2

SP – 1

SP

LOWER REGISTER

UPPER REGISTER

PUSH
(After PUSH, SP SP – 2)

SP – 6

SP – 5

SP – 4

SP – 3

SP – 2

SP – 1

SP

CALL
(After CALL, SP SP – 6)

0 0

PC3 – PC0

PC7 – PC4

0 0 EMB ERB

0 0 0

PC11– PC8

INTERRUPT
(When INT is acknowledged,

SP SP – 6)

SP – 6

SP – 5

SP – 4

SP – 3

SP – 2

SP – 1

SP

0 0

PC3 – PC0

PC7 – PC4

IS1 IS0 EMB ERB
PSW

C SC2 SC1 SC0

PC11– PC8

PSW

0 0 0 0

0

Figure 2-7. Push-Type Stack Operations

KS57C2302/C2304/P2304 MICROCONTROLLER ADDRESS SPACES

2-15

POP OPERATIONS

For each push operation there is a corresponding pop operation to write data from the stack back to the source
register or registers: for the PUSH instruction it is the POP instruction; for CALL, the instruction RET or SRET; for
interrupts, the instruction IRET. When a pop operation occurs, the SP is incremented by a number determined by
the type of operation and points to the next free stack location.

POP Instructions

A POP instruction references the SP to write data stored in two 4-bit stack locations back to the register pairs and
SB register. The value of the lower 4-bit register is popped first, followed by the value of the upper 4-bit register.
After the POP has executed, the SP is incremented by two and points to the next free stack location.

RET and SRET Instructions

The end of a subroutine call is signaled by the return instruction, RET or SRET. The RET or SRET uses the SP
to reference the six 4-bit stack locations used for the CALL and to write this data back to the PC, the EMB, and
the ERB. After the RET or SRET has executed, the SP is incremented by six and points to the next free stack
location.

IRET Instructions

The end of an interrupt sequence is signaled by the instruction IRET. IRET references the SP to locate the six 4-
bit stack addresses used for the interrupt and to write this data back to the PC and the PSW. After the IRET has
executed, the SP is incremented by six and points to the next free stack location.

LOWER

UPPER

POP
(SP SP + 2)

RET OR SRET
(SP SP + 6)

0 0

PC3 – PC0

PC7 – PC4

0 0 EMB ERB

0 0 0 0

PC11 – PC8

IRET
(SP SP + 6)

0 0

PC3 – PC0

PC7 – PC4

IS1 IS0 EMB ERB
PSW

C SC2 SC1 SC0

PC11 – PC8SP

SP + 1

SP + 2

SP + 3

SP + 4

SP + 5

SP + 6

SP

SP + 1

SP + 2

SP + 3

SP + 4

SP + 5

SP + 6

SP

SP + 1

SP + 2

PSW

0 0 0 0

Figure 2-8. Pop-Type Stack Operations

ADDRESS SPACES KS57C2302/C2304/P2304 MICROCONTROLLER

2-16

BIT SEQUENTIAL CARRIER (BSC)

The bit sequential carrier (BSC) is a 16-bit general register that can be manipulated using 1-, 4-, and 8-bit RAM
control instructions. RESET clears all BSC bit values to logic zero.

Using the BSC, you can specify sequential addresses and bit locations using 1-bit indirect addressing
(memb.@L). (Bit addressing is independent of the current EMB value.) In this way, programs can process 16-bit
data by moving the bit location sequentially and then incrementing or decreasing the value of the L register.

BSC data can also be manipulated using direct addressing. For 8-bit manipulations, the 4-bit register names
BSC0 and BSC2 must be specified and the upper and lower 8 bits manipulated separately.

If the values of the L register are 0H at BSC0.@L, the address and bit location assignment is FC0H.0. If the L
register content is FH at BSC0.@L, the address and bit location assignment is FC3H.3.

Table 2-4. BSC Register Organization

Name Address Bit 3 Bit 2 Bit 1 Bit 0

BSC0 FC0H BSC0.3 BSC0.2 BSC0.1 BSC0.0

BSC1 FC1H BSC1.3 BSC1.2 BSC1.1 BSC1.0

BSC2 FC2H BSC2.3 BSC2.2 BSC2.1 BSC2.0

BSC3 FC3H BSC3.3 BSC3.2 BSC3.1 BSC3.0

++ PROGRAMMING TIP — Using the BSC Register to Output 16-Bit Data

To use the bit sequential carrier (BSC) register to output 16-bit data (5937H) to the P3.0 pin:

BITS EMB
SMB 15
LD EA,#37H ;
LD BSC0,EA ; BSC0 ← A, BSC1 ← E
LD EA,#59H ;
LD BSC2,EA ; BSC2 ← A, BSC3 ← E
SMB 0
LD L,#0H ;

AGN LDB C,BSC0.@L ;
LDB P3.0,C ; P3.0 ← C
INCS L
JR AGN
RET

KS57C2302/C2304/P2304 MICROCONTROLLER ADDRESS SPACES

2-17

PROGRAM COUNTER (PC)

A 12-bit program counter (PC) stores addresses for instruction fetches during program execution. Whenever a
reset operation or an interrupt occurs, bits PC11 through PC0 are set to the vector address.

Usually, the PC is incremented by the number of bytes of the instruction being fetched. One exception is the 1-
byte REF instruction which is used to reference instructions stored in the ROM.

PROGRAM STATUS WORD (PSW)

The program status word (PSW) is an 8-bit word that defines system status and program execution status and
which permits an interrupted process to resume operation after an interrupt request has been serviced. PSW
values are mapped as follows:

(MSB) (LSB)

FB0H IS1 IS0 EMB ERB

FB1H C SC2 SC1 SC0

The PSW can be manipulated by 1-bit or 4-bit read/write and by 8-bit read instructions, depending on the specific
bit or bits being addressed. The PSW can be addressed during program execution regardless of the current value
of the enable memory bank (EMB) flag.

Part or all of the PSW is saved to stack prior to execution of a subroutine call or hardware interrupt. After the
interrupt has been processed, the PSW values are popped from the stack back to the PSW address.

When a RESET is generated, the EMB and ERB values are set according to the RESET vector address, and the
carry flag is left undefined (or the current value is retained). PSW bits IS0, IS1, SC0, SC1, and SC2 are all
cleared to logical zero.

Table 2-5. Program Status Word Bit Descriptions

PSW Bit Identifier Description Bit Addressing Read/Write

IS1, IS0 Interrupt status flags 1, 4 R/W

EMB Enable memory bank flag 1 R/W

ERB Enable register bank flag 1 R/W

C Carry flag 1 R/W

SC2, SC1, SC0 Program skip flags 8 R

ADDRESS SPACES KS57C2302/C2304/P2304 MICROCONTROLLER

2-18

INTERRUPT STATUS FLAGS (IS0, IS1)

PSW bits IS0 and IS1 contain the current interrupt execution status values. You can manipulate IS0 and IS1
flags directly using 1-bit RAM control instructions

By manipulating interrupt status flags in conjunction with the interrupt priority register (IPR), you can process
multiple interrupts by anticipating the next interrupt in an execution sequence. The interrupt priority control circuit
determines the IS0 and IS1 settings in order to control multiple interrupt processing. When both interrupt status
flags are set to "0", all interrupts are allowed. The priority with which interrupts are processed is then determined
by the IPR.

When an interrupt occurs, IS0 and IS1 are pushed to the stack as part of the PSW and are automatically
incremented to the next higher priority level. Then, when the interrupt service routine ends with an IRET
instruction, IS0 and IS1 values are restored to the PSW. Table 2-6 shows the effects of IS0 and IS1 flag settings.

Table 2-6. Interrupt Status Flag Bit Settings

IS1
Value

IS0
Value

Status of Currently
Executing Process

Effect of IS0 and IS1 Settings
on Interrupt Request Control

0 0 0 All interrupt requests are serviced

0 1 1 Only high-priority interrupt(s) as determined in the
interrupt priority register (IPR) are serviced

1 0 2 No more interrupt requests are serviced

1 1 – Not applicable; these bit settings are undefined

Since interrupt status flags can be addressed by write instructions, programs can exert direct control over
interrupt processing status. Before interrupt status flags can be addressed, however, you must first execute a DI
instruction to inhibit additional interrupt routines. When the bit manipulation has been completed, execute an EI
instruction to re-enable interrupt processing.

++ PROGRAMMING TIP — Setting ISx Flags for Interrupt Processing

The following instruction sequence shows how to use the IS0 and IS1 flags to control interrupt processing:

INTB DI ; Disable interrupt
BITR IS1 ; IS1 ← 0
BITS IS0 ; Allow interrupts according to IPR priority level
EI ; Enable interrupt

KS57C2302/C2304/P2304 MICROCONTROLLER ADDRESS SPACES

2-19

EMB FLAG (EMB)

The EMB flag is used to allocate specific address locations in the RAM by modifying the upper 4 bits of 12-bit
data memory addresses. In this way, it controls the addressing mode for data memory banks 0, 1, or 15.

When the EMB flag is "0", the data memory address space is restricted to bank 15 and addresses 000H–07FH of
memory bank 0, regardless of the SMB register contents. When the EMB flag is set to "1", the general-purpose
areas of bank 0, 1, and 15 can be accessed by using the appropriate SMB value.

++ PROGRAMMING TIP — Using the EMB Flag to Select Memory Banks

EMB flag settings for memory bank selection:

1. When EMB = "0":

SMB 1 ; Non-essential instruction since EMB = "0"
LD A,#9H
LD 90H,A ; (F90H) ← A, bank 15 is selected
LD 34H,A ; (034H) ← A, bank 0 is selected
SMB 0 ; Non-essential instruction since EMB = "0"
LD 90H,A ; (F90H) ← A, bank 15 is selected
LD 34H,A ; (034H) ← A, bank 0 is selected
SMB 15 ; Non-essential instruction, since EMB = "0"
LD 20H,A ; (020H) ← A, bank 0 is selected
LD 90H,A ; (F90H) ← A, bank 15 is selected

2. When EMB = "1":

SMB 1 ; Select memory bank 1
LD A,#9H
LD 0E0H,A ; (1E0H) ← A, bank 1 is selected
LD 0F0H,A ; (1F0H) ← A, bank 1 is selected
SMB 0 ; Select memory bank 0
LD 90H,A ; (090H) ← A, bank 0 is selected
LD 34H,A ; (034H) ← A, bank 0 is selected
SMB 15 ; Select memory bank 15
LD 20H,A ; Program error, but assembler does not detect it
LD 90H,A ; (F90H) ← A, bank 15 is selected

ADDRESS SPACES KS57C2302/C2304/P2304 MICROCONTROLLER

2-20

ERB FLAG (ERB)

The 1-bit register bank enable flag (ERB) determines the range of addressable working register area. When the
ERB flag is "1", the working register area from register banks 0 to 3 is selected according to the register bank
selection register (SRB). When the ERB flag is "0", register bank 0 is the selected working register area,
regardless of the current value of the register bank selection register (SRB).

When an internal reset is generated, bit 6 of program memory address 0000H is written to the ERB flag. This
automatically initializes the flag. When a vectored interrupt is generated, bit 6 of the respective address table in
program memory is written to the ERB flag, setting the correct flag status before the interrupt service routine is
executed.

During the interrupt routine, the ERB value is automatically pushed to the stack area along with the other PSW
bits. Afterwards, it is popped back to the FB0H.0 bit location. The initial ERB flag settings for each vectored
interrupt are defined using VENTn instructions.

++ PROGRAMMING TIP — Using the ERB Flag to Select Register Banks

ERB flag settings for register bank selection:

1. When ERB = "0":

SRB 1 ; Register bank 0 is selected (since ERB = "0", the
; SRB is configured to bank 0)

LD EA,#34H ; Bank 0 EA ← #34H
LD HL,EA ; Bank 0 HL ← EA
SRB 2 ; Register bank 0 is selected
LD YZ,EA ; Bank 0 YZ ← EA
SRB 3 ; Register bank 0 is selected
LD WX,EA ; Bank 0 WX ← EA

2. When ERB = "1":

SRB 1 ; Register bank 1 is selected
LD EA,#34H ; Bank 1 EA ← #34H
LD HL,EA ; Bank 1 HL ← Bank 1 EA
SRB 2 ; Register bank 2 is selected
LD YZ,EA ; Bank 2 YZ ← BANK2 EA
SRB 3 ; Register bank 3 is selected
LD WX,EA ; Bank 3 WX ← Bank 3 EA

KS57C2302/C2304/P2304 MICROCONTROLLER ADDRESS SPACES

2-21

SKIP CONDITION FLAGS (SC2, SC1, SC0)

The skip condition flags SC2, SC1, and SC0 in the PSW indicate the current program skip conditions and are set
and reset automatically during program execution. Skip condition flags can only be addressed by 8-bit read
instructions. Direct manipulation of the SC2, SC1, and SC0 bits is not allowed.

CARRY FLAG (C)

The carry flag is used to save the result of an overflow or borrow when executing arithmetic instructions involving
a carry (ADC, SBC). The carry flag can also be used as a 1-bit accumulator for performing Boolean operations
involving bit-addressed data memory.

If an overflow or borrow condition occurs when executing arithmetic instructions with carry (ADC, SBC), the carry
flag is set to "1". Otherwise, its value is "0". When a RESET occurs, the current value of the carry flag is retained
during power-down mode, but when normal operating mode resumes, its value is undefined.

The carry flag can be directly manipulated by predefined set of 1-bit read/write instructions, independent of other
bits in the PSW. Only the ADC and SBC instructions, and the instructions listed in Table 2-7, affect the carry flag.

Table 2-7. Valid Carry Flag Manipulation Instructions

Operation Type Instructions Carry Flag Manipulation

Direct manipulation SCF Set carry flag to "1"

RCF Clear carry flag to "0" (reset carry flag)

CCF Invert carry flag value (complement carry flag)

BTST C Test carry and skip if C = "1"

Bit transfer LDB (operand) (1) ,C Load carry flag value to the specified bit

LDB C,(operand) (1) Load contents of the specified bit to carry flag

Boolean manipulation BAND C,(operand) (1) AND the specified bit with contents of carry flag and save
the result to the carry flag

BOR C,(operand) (1) OR the specified bit with contents of carry flag and save
the result to the carry flag

BXOR C,(operand) (1) XOR the specified bit with contents of carry flag and save
the result to the carry flag

Interrupt routine INTn (2) Save carry flag to stack with other PSW bits

Return from interrupt IRET Restore carry flag from stack with other PSW bits

NOTES:
1. The operand has three bit addressing formats: mema.a, memb.@L, and @H + DA.b.
2. 'INTn' refers to the specific interrupt being executed and is not an instruction.

ADDRESS SPACES KS57C2302/C2304/P2304 MICROCONTROLLER

2-22

++ PROGRAMMING TIP — Using the Carry Flag as a 1-Bit Accumulator

1. Set the carry flag to logic one:

SCF ; C ← 1
LD EA,#0C3H ; EA ← #0C3H
LD HL,#0AAH ; HL ← #0AAH
ADC EA,HL ; EA ← #0C3H + #0AAH + #1H, C ← 1

2. Logical-AND bit 3 of address 3FH with P3.3 and output the result to P2.0:

LD H,#3H ; Set the upper four bits of the address to the H register
; value

LDB C,@H+0FH.3 ; C ← bit 3 of 3FH
BAND C,P3.3 ; C ← C AND P3.3
LDB P2.0,C ; Output result from carry flag to P2.0

KS57C2302/C2304/P2304 MICROCONTROLLER ADDRESSING MODES

3-1

3 ADDRESSING MODES

OVERVIEW

The enable memory bank flag, EMB, controls the two addressing modes for data memory. When the EMB flag is
set to logic one, you can address the entire RAM area; when the EMB flag is cleared to logic zero, the
addressable area in the RAM is restricted to specific locations.

The EMB flag works in connection with the select memory bank instruction, SMB n. You will recall that the SMB
n instruction is used to select RAM bank 0, 1, or 15. The SMB setting is always contained in the upper four bits of
a 12-bit RAM address. For this reason, both addressing modes (EMB = "0" and EMB = "1") apply specifically to
the memory bank indicated by the SMB instruction, and any restrictions to the addressable area within banks 0,
1, or 15. Direct and indirect 1-bit, 4-bit, and 8-bit addressing methods can be used. Several RAM locations are
addressable at all times, regardless of the current EMB flag setting.

Here are a few guidelines to keep in mind regarding data memory addressing:

— When you address peripheral hardware locations in bank 15, the mnemonic for the memory-mapped
hardware component can be used as the operand in place of the actual address location.

— Always use an even-numbered RAM address as the operand in 8-bit direct and indirect addressing.

— With direct addressing, use the RAM address as the instruction operand; with indirect addressing, the
instruction specifies a register which contains the operand's address.

ADDRESSING MODES KS57C2302/C2304/P2304 MICROCONTROLLER

3-2

DA
DA.b

@HL
@H + DA.b

@WX
@WL

mema.b memb.@L

EMB = 0 EMB = 1 X X X

000H WORKING
REGISTERS

BANK 0
(GENERAL
REGISTERS
AND STACK)

01FH
020H

0FFH

RAM
AREAS

ADDRESSING
MODE

NOTES
1. 'X' means don't care.
2. Blank columns indicate RAM areas that are not addressable, given the addressing method
 and enable memory bank (EMB) flag setting shown in the column headers.

EMB = 1 EMB = 0

SMB = 0 SMB = 0
07FH
080H

F80H

FFFH

BANK 15
(PERIPHERAL
HARDWARE
REGISTERS)

FB0H
FBFH
FC0HSMB = 15 SMB = 15

FF0H

BANK 1
(DISPLAY

REGISTERS)
SMB = 1 SMB = 1

1FFH

~~ ~~

1E0H

Figure 3-1. RAM Address Structure

KS57C2302/C2304/P2304 MICROCONTROLLER ADDRESSING MODES

3-3

EMB AND ERB INITIALIZATION VALUES

The EMB and ERB flag bits are set automatically by the values of the RESET vector address and the interrupt
vector address. When a RESET is generated internally, bit 7 of program memory address 0000H is written to the
EMB flag, initializing it automatically. When a vectored interrupt is generated, bit 7 of the respective vector
address table is written to the EMB. This automatically sets the EMB flag status for the interrupt service routine.
When the interrupt is serviced, the EMB value is automatically saved to stack and then restored when the
interrupt routine has completed.

At the beginning of a program, the initial EMB and ERB flag values for each vectored interrupt must be set by
using VENT instruction. The EMB and ERB can be set or reset by bit manipulation instructions (BITS, BITR)
despite the current SMB setting.

++ PROGRAMMING TIP — Initializing the EMB and ERB Flags

The following assembly instructions show how to initialize the EMB and ERB flag settings:

ORG 0000H ; ROM address assignment
VENT0 1,0,RESET ; EMB ← 1, ERB ← 0, branch RESET
VENT1 0,1,INTB ; EMB ← 0, ERB ← 1, branch INTB
VENT2 0,1,INT0 ; EMB ← 0, ERB ← 1, branch INT0
VENT3 0,1,INT1 ; EMB ← 0, ERB ← 1, branch INT1
ORG 000AH ; ROM address assignment
VENT5 0,1,INTT0 ; EMB ← 0, ERB ← 1, branch INTT0
•
•
•

RESET BITR EMB

ADDRESSING MODES KS57C2302/C2304/P2304 MICROCONTROLLER

3-4

ENABLE MEMORY BANK SETTINGS

EMB = "1"

When the enable memory bank flag EMB is set to logic one, you can address the data memory bank specified by
the select memory bank (SMB) value (0, 1, or 15) using 1-, 4-, or 8-bit instructions. You can use both direct and
indirect addressing modes. The addressable RAM areas when EMB = "1" are as follows:

If SMB = 0, 000H–0FFH

If SMB = 1, 1E0H–1FFH

If SMB = 15, F80H–FFFH

EMB = "0"

When the enable memory bank flag EMB is set to logic zero, the addressable area is defined independently of
the SMB value, and is restricted to specific locations depending on whether a direct or indirect address mode is
used.

If EMB = "0", the addressable area is restricted to locations 000H–07FH in bank 0 and to locations F80H–FFFH
in bank 15 for direct addressing. For indirect addressing, only locations 000H–0FFH in bank 0 are addressable,
regardless of SMB value.

To address the peripheral hardware register (bank 15) using indirect addressing, the EMB flag must first be set to
"1" and the SMB value to "15". When a RESET occurs, the EMB flag is set to the value contained in bit 7 of ROM
address 0000H.

EMB-Independent Addressing

At any time, several areas of the data memory can be addressed independent of the current status of the EMB
flag. These exceptions are described in Table 3-1.

Table 3-1. RAM Addressing Not Affected by the EMB Value

Address Addressing Method Affected Hardware Program Examples

000H–0FFH 4-bit indirect addressing using WX
and WL register pairs;
8-bit indirect addressing using SP

Not applicable LD A,@WX

PUSH EA
POP EA

FB0H–FBFH
FF0H–FFFH

1-bit direct addressing PSW, SCMOD,
IEx, IRQx, I/O

BITS EMB
BITR IE4

FC0H–FFFH 1-bit indirect addressing using the
L register

BSC, I/O BTST FC3H.@L
BAND C,P3.@L

KS57C2302/C2304/P2304 MICROCONTROLLER ADDRESSING MODES

3-5

SELECT BANK REGISTER (SB)

The select bank register (SB) is used to assign the memory bank and register bank. The 8-bit SB register con-
sists of the 4-bit select register bank register (SRB) and the 4-bit select memory bank register (SMB), as shown
in Figure 3-2.

During interrupts and subroutine calls, SB register contents can be saved to stack in 8-bit units by the PUSH SB
instruction. You later restore the value to the SB using the POP SB instruction.

SMB 3 SMB 2 SMB 1 SMB 0 0 0 SRB 1 SRB 0
SB

REGISTER

SMB (F83H) SRB (F82H)

Figure 3-2. SMB and SRB Values in the SB Register

Select Register Bank (SRB) Instruction

The select register bank (SRB) value specifies which register bank is to be used as a working register bank. The
SRB value is set by the 'SRB n' instruction, where n = 0, 1, 2, and 3.

One of the four register banks is selected by the combination of ERB flag status and the SRB value that is set
using the 'SRB n' instruction. The current SRB value is retained until another register is requested by program
software. PUSH SB and POP SB instructions are used to save and restore the contents of SRB during interrupts
and subroutine calls. RESET clears the 4-bit SRB value to logic zero.

Select Memory Bank (SMB) Instruction

To select one of the four available data memory banks, you must execute an SMB n instruction specifying the
number of the memory bank you want (0, 1, or 15). For example, the instruction 'SMB 1' selects bank 1 and
'SMB 15' selects bank 15. (And remember to enable the selected memory bank by making the appropriate EMB
flag setting.)

The upper four bits of the 12-bit data memory address are stored in the SMB register. If the SMB value is not
specified by software (or if a RESET does not occur) the current value is retained. RESET clears the 4-bit SMB
value to logic zero.

The PUSH SB and POP SB instructions save and restore the contents of the SMB register to and from the stack
area during interrupts and subroutine calls.

ADDRESSING MODES KS57C2302/C2304/P2304 MICROCONTROLLER

3-6

DIRECT AND INDIRECT ADDRESSING

1-bit, 4-bit, and 8-bit data stored in data memory locations can be addressed directly using a specific register or
bit address as the instruction operand.

Indirect addressing specifies a memory location that contains the required direct address. The KS57 instruction
set supports 1-bit, 4-bit, and 8-bit indirect addressing. For 8-bit indirect addressing, an even-numbered RAM
address must always be used as the instruction operand.

1-BIT ADDRESSING

Table 3-2. 1-Bit Direct and Indirect RAM Addressing

Operand
Notation

Addressing Mode
Description

EMB Flag
Setting

Addressable
Area

Memory
Bank

Hardware I/O
Mapping

DA.b Direct: bit is indicated by the 0 000H–07FH Bank 0 –

RAM address (DA), memory F80H–FFFH Bank 15 All 1-bit

bank selection, and specified 1 000H–0FFH Bank 0 addressable

bit number (b). 1E0H–1FFH Bank 1 peripherals

F80H–FFFH Bank 15 (SMB = 15)

mema.b Direct: bit is indicated by
addressable area (mema) and
bit number (b).

x FB0H–FBFH
FF0H–FFFH

Bank 15 IS0, IS1, EMB,
ERB, IEx, IRQx,
Pn.n

memb.@L Indirect: lower two bits of reg-
ister L as indicated by the up-
per 6 bits of RAM area
(memb) and the upper two
bits of register L.

x FC0H–FFFH Bank 15 BSCn.x
Pn.n

@H + DA.b Indirect: bit indicated by the 0 000H–0FFH Bank 0 –

lower four bits of the address 1 000H–0FFH Bank 0 All 1-bit

(DA), memory bank selection, 1E0H–1FFH Bank 1 addressable

and the H register identifier. F80H–FFFH Bank 15 peripherals
(SMB = 15)

NOTE: x = not applicable.

KS57C2302/C2304/P2304 MICROCONTROLLER ADDRESSING MODES

3-7

++ PROGRAMMING TIP — 1-Bit Addressing Modes

1-Bit Direct Addressing

1. If EMB = "0":

AFLAG EQU 34H.3
BFLAG EQU 85H.3
CFLAG EQU 0BAH.0

SMB 0
BITS AFLAG ; 34H.3 ← 1
BITS BFLAG ; F85H.3 ← 1
BTST CFLAG ; If FBAH.0 = 1, skip
BITS BFLAG ; Else if, FBAH.0 = 0, F85H.3 (BMOD.3) ← 1
BITS P3.0 ; FF3H.0 (P3.0) ← 1

2. If EMB = "1":

AFLAG EQU 34H.3
BFLAG EQU 85H.3
CFLAG EQU 0BAH.0

SMB 0
BITS AFLAG ; 34H.3 ← 1
BITS BFLAG ; 85H.3 ← 1
BTST CFLAG ; If 0BAH.0 = 1, skip
BITS BFLAG ; Else if 0BAH.0 = 0, 085H.3 ← 1
BITS P3.0 ; FF3H.0 (P3.0) ← 1

1-Bit Indirect Addressing

1. If EMB = "0":

AFLAG EQU 34H.3
BFLAG EQU 85H.3
CFLAG EQU 0BAH.0

SMB 0
LD H,#0BH ; H ← #0BH
BTSTZ @H+CFLAG ; If 0BAH.0 = 1, 0BAH.0 ← 0 and skip
BITS CFLAG ; Else if 0BAH.0 = 0, FBAH.0 ← 1

2.If EMB = "1":

AFLAG EQU 34H.3
BFLAG EQU 85H.3
CFLAG EQU 0BAH.0

SMB 0
LD H,#0BH ; H ← #0BH
BTSTZ @H+CFLAG ; If 0BAH.0 = 1, 0BAH.0 ← 0 and skip
BITS CFLAG ; Else if 0BAH.0 = 0, 0BAH.0 ← 1

ADDRESSING MODES KS57C2302/C2304/P2304 MICROCONTROLLER

3-8

4-BIT ADDRESSING

Table 3-3. 4-Bit Direct and Indirect RAM Addressing

Operand
Notation

Addressing Mode
Description

EMB Flag
Setting

Addressable
Area

Memory
Bank

Hardware I/O
Mapping

DA 0 000H–07FH Bank 0 –

Direct: 4-bit address indicated F80H–FFFH Bank 15 All 4-bit

by the RAM address (DA) and 1 000H–0FFH Bank 0 addressable

the memory bank selection 1E0H–1FFH Bank 1 peripherals

F80H–FFFH Bank 15 (SMB = 15)

@HL Indirect: 4-bit address 0 000H–0FFH Bank 0 –

indicated by the memory bank 1 000H–0FFH Bank 0 All 4-bit

selection and register HL 1E0H–1FFH Bank 1 addressable

F80H–FFFH Bank 15 peripherals
(SMB = 15)

@WX Indirect: 4-bit address
indicated by register WX

x 000H–0FFH Bank 0 –

@WL Indirect: 4-bit address
indicated by register WL

x 000H–0FFH Bank 0

NOTE: x = not applicable.

KS57C2302/C2304/P2304 MICROCONTROLLER ADDRESSING MODES

3-9

++ PROGRAMMING TIP — 4-Bit Addressing Modes

4-Bit Direct Addressing

1. If EMB = "0":

ADATA EQU 46H
BDATA EQU 8EH

SMB 15 ; Non-essential instruction, since EMB = "0"
LD A,P3 ; A ← (P3)
SMB 0 ; Non-essential instruction, since EMB = "0"
LD ADATA,A ; (046H) ← A
LD BDATA,A ; (F8EH (LCON)) ← A

2. If EMB = "1":

ADATA EQU 46H
BDATA EQU 8EH

SMB 15
LD A,P3 ; A ← (P3)
SMB 0
LD ADATA,A ; (046H) ← A
LD BDATA,A ; (08EH) ← A

4-Bit Indirect Addressing

1. If EMB = "0", compare bank 0 locations 040H–046H with bank 0 locations 060H–066H:

ADATA EQU 46H
BDATA EQU 66H

SMB 1 ; Non-essential instruction, since EMB = "0"
LD HL,#BDATA
LD WX,#ADATA

COMP LD A,@WL ; A ← bank 0 (040H–046H)
CPSE A,@HL ; If bank 0 (060H–066H) = A, skip
SRET
DECS L
JR COMP
RET

2. If EMB = "0", exchange bank 0 locations 040H–046H with bank 0 locations 060H–066H:

ADATA EQU 46H
BDATA EQU 66H

SMB 1 ; Non-essential instruction, since EMB = "0"
LD HL,#BDATA
LD WX,#ADATA

TRANS LD A,@WL ; A ← bank 0 (040H–046H)
XCHD A,@HL ; Bank 0 (060H–066H) ↔ A
JR TRANS

ADDRESSING MODES KS57C2302/C2304/P2304 MICROCONTROLLER

3-10

8-BIT ADDRESSING

Table 3-4. 8-Bit Direct and Indirect RAM Addressing

Instruction
Notation

Addressing Mode
Description

EMB Flag
Setting

Addressable
Area

Memory
Bank

Hardware I/O
Mapping

DA 0 000H–07FH Bank 0 –

Direct: 8-bit address indicated F80H–FFFH Bank 15 All 8-bit

by the RAM address (DA = 1 000H–0FFH Bank 0 addressable

even number) and memory 1E0H–1FFH Bank 1 peripherals

bank selection F80H–FFFH Bank 15 (SMB = 15)

@HL Indirect: the 8-bit address 4-bit 0 000H–0FFH Bank 0 –

indicated by the memory bank 1 000H–0FFH Bank 0 All 8-bit

selection and register HL; (the 1E0H–1FFH Bank 1 addressable

L register value must be an
even number)

F80H–FFFH Bank 15 peripherals
(SMB = 15)

KS57C2302/C2304/P2304 MICROCONTROLLER ADDRESSING MODES

3-11

++ PROGRAMMING TIP — 8-Bit Addressing Modes

8-Bit Direct Addressing

1. If EMB = "0":

ADATA EQU 46H
BDATA EQU 8EH

LD EA, #0FFH
SMB 0
LD ADATA,EA ; (046H) ← A, (047H) ← E
LD BDATA,EA ; (F8EH) ← A, (F8FH) ← E

2. If EMB = "1":

ADATA EQU 46H
BDATA EQU 8EH

SMB 0
LD EA, #0FFH
LD ADATA,EA ; (046H) ← A, (047H) ← E
LD BDATA,EA ; (08EH) ← A, (08FH) ← E

8-Bit Indirect Addressing

1. If EMB = "0":

ADATA EQU 46H
SMB 1 ; Non-essential instruction, since EMB = "0"
LD HL,#ADATA
LD EA,@HL ; A ← (046H), E ← (047H)

ADDRESSING MODES KS57C2302/C2304/P2304 MICROCONTROLLER

3-12

NOTES

KS57C2302/C2304/P2304 MICROCONTROLLER MEMORY MAP

4-1

4 MEMORY MAP

OVERVIEW

To support program control of peripheral hardware, I/O addresses for peripherals are memory-mapped to bank
15 of the RAM. Memory mapping lets you use a mnemonic as the operand of an instruction in place of the
specific memory location.

Access to bank 15 is controlled by the select memory bank (SMB) instruction and by the enable memory bank
flag (EMB) setting. If the EMB flag is "0", bank 15 can be addressed using direct addressing, regardless of the
current SMB value. 1-bit direct and indirect addressing can be used for specific locations in bank 15, regardless
of the current EMB value.

I/O MAP FOR HARDWARE REGISTERS

Table 4-1 contains detailed information about I/O mapping for peripheral hardware in bank 15 (register locations
F80H–FFFH). Use the I/O map as a quick-reference source when writing application programs. The I/O map
gives you the following information:

— Register address

— Register name (mnemonic for program addressing)

— Bit values (both addressable and non-manipulable)

— Read-only, write-only, or read and write addressability

— 1-bit, 4-bit, or 8-bit data manipulation characteristics

MEMORY MAP KS57C2302/C2304/P2304 MICROCONTROLLER

4-2

Table 4-1. I/O Map for Memory Bank 15

Memory Bank 15 Addressing Mode

Address Register Bit 3 Bit 2 Bit 1 Bit 0 R/W 1-Bit 4-Bit 8-Bit

F80H SP .3 .2 .1 "0" R/W No No Yes

F81H .7 .6 .5 .4

Locations F82H–F84H are not mapped.

F85H BMOD .3 .2 .1 .0 W .3 Yes No

F86H BCNT .3 .2 .1 .0 R No No Yes

F87H .7 .6 .5 .4

F88H WMOD .3 .2 .1 .0 W .3 (1) No Yes

F89H .7 "0" .5 .4

Locations F8AH–F8BH are not mapped.

F8CH LMOD .3 .2 .1 .0 W .3 No Yes

F8DH .7 .6 .5 .4

F8EH LCON "0" (4) .2 "0" .0 W No Yes No

Location F8FH is not mapped.

F90H TMOD0 .3 .2 "0" "0" W .3 No Yes

F91H "0" .6 .5 .4

F92H "u" (4) TOE0 "u" (4) "u" (4) R/W Yes No No

Location F93H is not mapped.

F94H TCNT0 .3 .2 .1 .0 R No No Yes

F95H .7 .6 .5 .4

F96H TREF0 .3 .2 .1 .0 W No No Yes

F97H .7 .6 .5 .4

F98H WDMOD .3 .2 .1 .0 W No No Yes

F99H .7 .6 .5 .4

F9AH WDFLAG .3 “0” “0” “0” W Yes Yes No

Locations F9BH–FAFH are not mapped.

FB0H PSW IS1 IS0 EMB ERB R/W Yes Yes Yes

FB1H C (2) SC2 SC1 SC0 R No No

FB2H IPR IME .2 .1 .0 W IME Yes No

FB3H PCON .3 .2 .1 .0 W No Yes No

FB4H IMOD0 .3 "0" .1 .0 W No Yes No

FB5H IMOD1 "0" "0" "0" .0

FB6H IMOD2 "0" "0" .1 .0

FB7H SCMOD .3 .2 "0" .0 W Yes No No

KS57C2302/C2304/P2304 MICROCONTROLLER MEMORY MAP

4-3

Table 4-1. I/O Map for Memory Bank 15 (Continued)

Memory Bank 15 Addressing Mode

Address Register Bit 3 Bit 2 Bit 1 Bit 0 R/W 1-Bit 4-Bit 8-Bit

FB8H INT (A) "0" "0" IEB IRQB R/W Yes Yes No

Location FB9H is not mapped

FBAH INT (B) “0” “0” IEW IRQW R/W Yes Yes No

Location FBBH is not mapped.

FBCH INT (C) "0" "0" IET0 IRQT0 R/W Yes Yes No

Location FBDH is not mapped.

FBEH INT (E) IE1 IRQ1 IE0 IRQ0 R/W Yes Yes No

FBFH INT (F) “0” “0” IE2 IRQ2

FC0H BSC0 .3 .2 .1 .0 R/W Yes Yes Yes

FC1H BSC1 .3 .2 .1 .0

FC2H BSC2 .3 .2 .1 .0

FC3H BSC3 .3 .2 .1 .0

FD0H CLMOD .3 "0" .1 .0 W No Yes No

Locations FD1H–FDBH are not mapped.

FDCH PUMOD PM.3 PM.2 PM.1 "0" W No No Yes

FDDH "0" PM.6 "0" "0"

Locations FDEH–FE7H are not mapped.

FE8H PMG1 PM3.3 PM3.2 PM3.1 PM3.0 W No No Yes

FE9H PM6.3 PM6.2 PM6.1 PM6.0

Locations FEAH–FEBH are not mapped.

FECH PMG2 “0” PM2 “0” “0” W No No Yes

FEDH "0" “0” "0" "0"

Locations FEEH–FF0H are not mapped.

FF1H Port 1 .3 .2 .1 .0 R Yes Yes No

FF2H Port 2 .3 .2 .1 .0 R/W Yes Yes No

FF3H Port 3 .3 .2 .1 .0 R/W Yes Yes No

Locations FF4H–FF5H are not mapped.

FF6H Port 6 .3 .2 .1 .0 R/W Yes Yes No

Locations FF7H–FFFH are not mapped.

NOTES:
1. Bit 3 in the WMOD register is read only.
2. The carry flag can be read or written by specific bit manipulation instructions only.
3. The LCON.3 register must be set to “0”.
4. “u” means that the value is undetermined.

MEMORY MAP KS57C2302/C2304/P2304 MICROCONTROLLER

4-4

REGISTER DESCRIPTIONS

In this section, register descriptions are presented in a consistent format to familiarize you with the memory-
mapped I/O locations in bank 15 of the RAM. Figure 4-1 describes features of the register description format.
Register descriptions are arranged in alphabetical order. Programmers can use this section as a quick-reference
source when writing application programs.

Counter registers and reference registers, as well as the stack pointer and port I/O latches, are not included in
these descriptions. More detailed information about how these registers are used is included in Part II of this
manual, "Hardware Descriptions," in the context of the corresponding peripheral hardware module descriptions.

KS57C2302/C2304/P2304 MICROCONTROLLER MEMORY MAP

4-5

CLMOD − − Clock Output Mode Control Register FD0H

Bit

Identifier
RESET Value

Read/Write

Bit Addressing

CLMOD.3

W

4

0

3

.3

Register ID Register name

Register location
in RAM bank 15

Bit number in
MSB to LSB order

Bit identifier used
for bit addressing

Bit value immediately
following a RESET

Type of addressing
that must be used to
address the bit
(1-bit, 4-bit, or 8-bit)

R = Read-only
W = Write-only

R/W = Read/write

Register and bit IDs
used for bit addressing

Description of the
effect of specific bit
settings

Name of individual
bit or related bits

W

0

2

.2

4

W

0

1

.1

4

W

0

0

.0

4

CLMOD.2

CLMOD.1 - .0

Associated
hardware module

CPU

Bit 2

0 Always logic zero

Enable/Disable Clock Output Control Bit

0

1

Disable clock output

Enable clock output

Clock Source and Frequency Selection Control Bits

Select CPU clock source

Select system clock fxx/8 (524 kHz at 4.19 MHz)

0

0

1

1

0

1

0

1 Select system clock fxx/64 (65.5 kHz at 4.19 MHz)

Select system clock fxx/16 (262 kHz at 4.19 MHz)

Figure 4-1. Register Description Format

MEMORY MAP KS57C2302/C2304/P2304 MICROCONTROLLER

4-6

BMOD — Basic Timer Mode Register F85H

Bit 3 2 1 0

Identifier .3 .2 .1 .0

RESET Value 0 0 0 0

Read/Write W W W W

Bit Addressing 1/4 4 4 4

.3 Basic Timer Restart Bit

1 Restart basic timer, then clear IRQB flag, BCNT and BMOD.3 to logic zero

.2–.0 Input Clock Frequency and Signal Stabilization Interval Control Bits

0 0 0 Input clock frequency:
Signal stabilization interval:

fxx / 212 (1.02 kHz)
220 / fxx (250 ms)

0 1 1 Input clock frequency:
Signal stabilization interval:

fxx / 29 (8.18 kHz)
217 / fxx (31.3 ms)

1 0 1 Input clock frequency:
Signal stabilization interval:

fxx / 27 (32.7 kHz)
215 / fxx (7.82 ms)

1 1 1 Input clock frequency:
Signal stabilization interval:

fxx / 25 (131 kHz)
213 / fxx (1.95 ms)

NOTES:
1. Signal stabilization interval is the time required to stabilize clock signal oscillation after stop mode is terminated by

an interrupt. The stabilization interval can also be interpreted as "Interrupt Interval Time".
2. When a RESET occurs, the oscillation stabilization time is 31.3 ms (217/fxx) at 4.19 MHz.
3. 'fxx' is the system clock rate given a clock frequency of 4.19 MHz.

KS57C2302/C2304/P2304 MICROCONTROLLER MEMORY MAP

4-7

CLMOD — Clock Output Mode Register FD0H

Bit 3 2 1 0

Identifier .3 "0" .1 .0

RESET Value 0 0 0 0

Read/Write W W W W

Bit Addressing 4 4 4 4

.3 Enable/Disable Clock Output Control Bit

0 Disable clock output

1 Enable clock output

.2 Bit 2

0 Always logic zero

.1–.0 Clock Source and Frequency Selection Control Bits

0 0 Select CPU clock source fx/4, fx/8, fx/64 or fxt/4 (1.05 MHz, 524 kHz,
65.5 kHz or 8.192KHz)

0 1 Select system clock fxx/8 (524 kHz)

1 0 Select system clock fxx/16 (262 kHz)

1 1 Select system clock fxx/64 (65.5 kHz)

NOTE: 'fxx' and 'fx' is the system clock and the main clock respectively, given a clock frequency of 4.19 MHz.
 'fxt' is the sub clock, given a clock frequency of 32.768KHz.

MEMORY MAP KS57C2302/C2304/P2304 MICROCONTROLLER

4-8

IE0, 1, IRQ0, 1 — INT0, 1 Interrupt Enable/Request Flags FBEH

Bit 3 2 1 0

Identifier IE1 IRQ1 IE0 IRQ0

RESET Value 0 0 0 0

Read/Write R/W R/W R/W R/W

Bit Addressing 1/4 1/4 1/4 1/4

IE1 INT1 Interrupt Enable Flag

0 Disable interrupt requests at the INT1 pin

1 Enable interrupt requests at the INT1 pin

IRQ1 INT1 Interrupt Request Flag

– Generate INT1 interrupt (This bit is set and cleared by hardware when rising or
falling edge detected at INT1 pin.)

IE0 INT0 Interrupt Enable Flag

0 Disable interrupt requests at the INT0 pin

1 Enable interrupt requests at the INT0 pin

IRQ0 INT0 Interrupt Request Flag

– Generate INT0 interrupt (This bit is set and cleared automatically by hardware
when rising or falling edge detected at INT0 pin.)

KS57C2302/C2304/P2304 MICROCONTROLLER MEMORY MAP

4-9

IE2, IRQ2 — INT2 Interrupt Enable/Request Flags FBFH

Bit 3 2 1 0

Identifier "0" "0" IE2 IRQ2

RESET Value 0 0 0 0

Read/Write R/W R/W R/W R/W

Bit Addressing 1/4 1/4 1/4 1/4

.3–.2 Bits 3–2

0 Always logic zero

IE2 INT2 Interrupt Enable Flag

0 Disable INT2 interrupt requests at the INT2 pin

1 Enable INT2 interrupt requests at the INT2 pin

IRQ2 INT2 Interrupt Request Flag

– Generate INT2 quasi-interrupt (This bit is set and is not cleared automatically
by hardware when a rising or falling edge is detected at INT2. Since INT2 is a
quasi-interrupt, IRQ2 flag must be cleared by software.)

MEMORY MAP KS57C2302/C2304/P2304 MICROCONTROLLER

4-10

IEB, IRQB — INTB Interrupt Enable/Request Flags FB8H

Bit 3 2 1 0

Identifier “0” “0” IEB IRQB

RESET Value 0 0 0 0

Read/Write R/W R/W R/W R/W

Bit Addressing 1/4 1/4 1/4 1/4

.3–.2 Bits 3–2

0 Always logic zero

IEB INTB Interrupt Enable Flag

0 Disable INTB interrupt requests

1 Enable INTB interrupt requests

IRQB INTB Interrupt Request Flag

– Generate INTB interrupt (This bit is set and cleared automatically by hardware
when reference interval signal received from basic timer.)

KS57C2302/C2304/P2304 MICROCONTROLLER MEMORY MAP

4-11

IET0, IRQT0 — INTT0 Interrupt Enable/Request Flags FBCH

Bit 3 2 1 0

Identifier "0" "0" IET0 IRQT0

RESET Value 0 0 0 0

Read/Write R/W R/W R/W R/W

Bit Addressing 1/4 1/4 1/4 1/4

.3–.2 Bits 3–2

0 Always logic zero

IET0 INTT0 Interrupt Enable Flag

0 Disable INTT0 interrupt requests

1 Enable INTT0 interrupt requests

IRQT0 INTT0 Interrupt Request Flag

– Generate INTT0 interrupt (This bit is set and cleared automatically by
hardware when contents of TCNT0 and TREF0 registers match.)

MEMORY MAP KS57C2302/C2304/P2304 MICROCONTROLLER

4-12

IEW, IRQW — INTW Interrupt Enable/Request Flags FBAH

Bit 3 2 1 0

Identifier "0" "0" IEW IRQW

RESET Value 0 0 0 0

Read/Write R/W R/W R/W R/W

Bit Addressing 1/4 1/4 1/4 1/4

.3–.2 Bits 3–2

0 Always logic zero

IEW INTW Interrupt Enable Flag

0 Disable INTW interrupt requests

1 Enable INTW interrupt requests

IRQW INTW Interrupt Request Flag

– Generate INTW interrupt (This bit is set when the timer interval is set to 0.5
seconds or 3.91 milliseconds.)

NOTE: Since INTW is a quasi-interrupt, the IRQW flag must be cleared by software.

KS57C2302/C2304/P2304 MICROCONTROLLER MEMORY MAP

4-13

IMOD0 — External Interrupt 0 (INT0) Mode Register FB4H

Bit 3 2 1 0

Identifier .3 "0" .1 .0

RESET Value 0 0 0 0

Read/Write W W W W

Bit Addressing 4 4 4 4

.3 Interrupt Sampling Clock Selection Bit

0 Select CPU clock as a sampling clock

1 Select sampling clock frequency of the selected system clock (fxx/64)

.2 Bit 2

0 Always logic zero

.1–.0 External Interrupt Mode Control Bits

0 0 Interrupt requests are triggered by a rising signal edge

0 1 Interrupt requests are triggered by a falling signal edge

1 0 Interrupt requests are triggered by both rising and falling signal edges

1 1 Interrupt request flag (IRQ0) cannot be set to logic one

MEMORY MAP KS57C2302/C2304/P2304 MICROCONTROLLER

4-14

IMOD1 — External Interrupt 1 (INT1) Mode Register FB5H

Bit 3 2 1 0

Identifier "0" "0" "0" IMOD1.0

RESET Value 0 0 0 0

Read/Write W W W W

Bit Addressing 4 4 4 4

.3–.1 Bits 3–1

0 Always logic zero

.0 External Interrupt 1 Edge Detection Control Bit

0 Rising edge detection

1 Falling edge detection

KS57C2302/C2304/P2304 MICROCONTROLLER MEMORY MAP

4-15

IMOD2 — External Interrupt 2 (INT2) Mode Register FB6H

Bit 3 2 1 0

Identifier "0" "0" IMOD2.1 IMOD2.0

RESET Value 0 0 0 0

Read/Write W W W W

Bit Addressing 4 4 4 4

.3–.2 Bits 3–2

0 Always logic zero

.1–.0 External Interrupt 2 Edge Detection Selection Bit

0 0 Select rising edge at INT2 pin

0 1 Reserved

1 0 Select falling edge at KS2–KS3

1 1 Select falling edge at KS0–KS3

MEMORY MAP KS57C2302/C2304/P2304 MICROCONTROLLER

4-16

IPR — Interrupt Priority Register FB2H

Bit 3 2 1 0

Identifier IME .2 .1 .0

RESET Value 0 0 0 0

Read/Write W W W W

Bit Addressing 1/4 4 4 4

IME Interrupt Master Enable Bit

0 Disable all interrupt processing

1 Enable processing for all interrupt service requests

.2–.0 Interrupt Priority Assignment Bits

0 0 0 Normal interrupt handling according to default priority settings

0 0 1 Process INTB interrupt at highest priority

0 1 0 Process INT0 interrupt at highest priority

0 1 1 Process INT1 interrupt at highest priority

1 0 0 Reserved

1 0 1 Process INTT0 interrupt at highest priority

KS57C2302/C2304/P2304 MICROCONTROLLER MEMORY MAP

4-17

LCON — LCD Output Control Register F8EH

Bit 3 2 1 0

Identifier "0" .2 "0" .0

RESET Value 0 0 0 0

Read/Write W W W W

Bit Addressing 4 4 4 4

.3 LCD Bias Selection Bit

0 This bit is used for internal testing only; always logic zero.

.2 LCD Clock Output Disable/Enable Bit

0 Disable LCDCK and LCDSY signal outputs.

1 Enable LCDCK and LCDSY signal outputs.

.1 Bit 1

0 Always logic zero

.0 LCD Display Control Bit

0 LCD output low, turns display off: cut off current to dividing resistor, and output
port 8 latch contents.

1 If LMOD.3 = “0”: turn display off; output port 8 latch contents; If LMOD.3 = “1”:
COM and SEG output in display mode; LCD display on.

NOTES:
1. You can manipulate LCON.0, when you try to turn ON/OFF LCD display internally. If you want to control LCD

ON/OFF or LCD contrast externally, you should set the LCON.0 to "0". refer to chapter 12, if you need more
information.

2. To select the LCD bias, you must properly configure both LCON.0 and the external LCD bias circuit connection.
3. The LCON.3 register must be set to “0”.

MEMORY MAP KS57C2302/C2304/P2304 MICROCONTROLLER

4-18

LMOD — LCD Mode Register F8DH, F8CH

Bit 7 6 5 4 3 2 1 0

Identifier .7 .6 .5 .4 .3 .2 .1 .0

RESET Value 0 0 0 0 0 0 0 0

Read/Write W W W W W W W W

Bit Addressing 8 8 8 8 1/8 8 8 8

.7–.6 LCD Output Segment and Pin Configuration Bits

0 0 Segments 24–27; and 28–31

0 1 Segment 24–27; 1-bit output at P8.4–P8.7

1 0 Segment 28–31; 1-bit output at P8.0–P8.3

1 1 1-bit output only at P8.0–P8.3, and P8.4–P8.7

.5–.4 LCD Clock (LCDCK) Frequency Selection Bits

0 0 fw/29 = 64 Hz

0 1 fw/28 = 128 Hz

1 0 fw/27 = 256 Hz

1 1 fw/26 = 512 Hz

.3–.0 Duty and Bias Selection for LCD Display

0 – – – LCD display off

1 0 0 0 1/4 duty, 1/3 bias

1 0 0 1 1/3 duty, 1/3 bias

1 0 1 0 1/2 duty, 1/2 bias

1 0 1 1 1/3 duty, 1/2 bias

1 1 0 0 Static

NOTE: Watch timer frequency(fw) is assumed to be 32.768KHz.

KS57C2302/C2304/P2304 MICROCONTROLLER MEMORY MAP

4-19

PCON — Power Control Register FB3H

Bit 3 2 1 0

Identifier .3 .2 .1 .0

RESET Value 0 0 0 0

Read/Write W W W W

Bit Addressing 4 4 4 4

.3–.2 CPU Operating Mode Control Bits

0 0 Enable normal CPU operating mode

0 1 Initiate idle power-down mode

1 0 Initiate stop power-down mode

.1–.0 CPU Clock Frequency Selection Bits

0 0 If SCMOD.0 = "0", fx/64; if SCMOD.0 = "1", fxt/4

1 0 If SCMOD.0 = "0", fx/8; if SCMOD.0 = "1", fxt/4

1 1 If SCMOD.0 = "0", fx/4; if SCMOD.0 = "1", fxt/4

NOTE: 'fx' is the main system clock; 'fxt' is the subsystem clock.

MEMORY MAP KS57C2302/C2304/P2304 MICROCONTROLLER

4-20

PMG1 — Port I/O Mode Flags (Group 1: Ports 3 and 6) FE9H, FE8H

Bit 7 6 5 4 3 2 1 0

Identifier PM6.3 PM6.2 PM6.1 PM6.0 PM3.3 PM3.2 PM3.1 PM3.0

RESET Value 0 0 0 0 0 0 0 0

Read/Write W W W W W W W W

Bit Addressing 8 8 8 8 8 8 8 8

PM6.3 P6.3 I/O Mode selection Flag

0 Set P6.3 to input mode

1 Set P6.3 to output mode

PM6.2 P6.2 I/O Mode Selection Flag

0 Set P6.2 to input mode

1 Set P6.2 to output mode

PM6.1 P6.1 I/O Mode Selection Flag

0 Set P6.1 to input mode

1 Set P6.1 to output mode

PM6.0 P6.0 I/O Mode Selection Flag

0 Set P6.0 to input mode

1 Set P6.0 to output mode

PM3.3 P3.3 I/O Mode Selection Flag

0 Set P3.3 to input mode

1 Set P3.3 to output mode

PM3.2 P3.2 I/O Mode Selection Flag

0 Set P3.2 to input mode

1 Set P3.2 to output mode

PM3.1 P3.1 I/O Mode Selection Flag

0 Set P3.1 to input mode

1 Set P3.1 to output mode

PM3.0 P3.0 I/O Mode Selection Flag

0 Set P3.0 to input mode

1 Set P3.0 to output mode

KS57C2302/C2304/P2304 MICROCONTROLLER MEMORY MAP

4-21

PMG2 — Port I/O Mode Flags (Group 2: Port 2) FEDH, FECH

Bit 7 6 5 4 3 2 1 0

Identifier “0” “0” “0” “0” “0” PM2 “0” “0”

RESET Value 0 0 0 0 0 0 0 0

Read/Write W W W W W W W W

Bit Addressing 8 8 8 8 8 8 8 8

.7–.3 Bits 7–3

0 Always logic zero

PM2 P2 I/O Mode Selection Flag

0 Set P2 to input mode

1 Set P2 to output mode

.1–.0 Bits 1–0

0 Always logic zero

MEMORY MAP KS57C2302/C2304/P2304 MICROCONTROLLER

4-22

PSW — Program Status Word FB1H, FB0H

Bit 7 6 5 4 3 2 1 0

Identifier C SC2 SC1 SC0 IS1 IS0 EMB ERB

RESET Value (1) 0 0 0 0 0 0 0

Read/Write R/W R R R R/W R/W R/W R/W

Bit Addressing (2) 8 8 8 1/4 1/4 1 1

C Carry Flag

0 No overflow or borrow condition exists

1 An overflow or borrow condition exists

SC2–SC0 Skip Condition Flags

0 No skip condition exists; no direct manipulation of these bits is allowed

1 A skip condition exists; no direct manipulation of these bits is allowed

IS1, IS0 Interrupt Status Flags

0 0 Service all interrupt requests

0 1 Service only the high-priority interrupt(s) as determined in the interrupt
priority register (IPR)

1 0 Do not service any more interrupt requests

1 1 Undefined

EMB Enable Data Memory Bank Flag

0 Restrict program access to data memory to bank 15 (F80H–FFFH) and to
the locations 000H–07FH in the bank 0 only

1 Enable full access to data memory banks 0, 1, 2, and 15

ERB Enable Register Bank Flag

0 Select register bank 0 as working register area

1 Select register banks 0, 1, 2, or 3 as working register area in accordance with
the select register bank (SRB) instruction operand

NOTES:
1. The value of the carry flag after a RESET occurs during normal operation is undefined. If a RESET occurs during

power-down mode (IDLE or STOP), the current value of the carry flag is retained.
2. The carry flag can only be addressed by a specific set of 1-bit manipulation instructions. See Section 2 for

detailed information.

KS57C2302/C2304/P2304 MICROCONTROLLER MEMORY MAP

4-23

PUMOD — Pull-Up Resistor Mode Register FDDH, FDCH

Bit 7 6 5 4 3 2 1 0

Identifier “0” PUR6 “0” “0” PUR3 PUR2 PUR1 “0”

RESET Value 0 0 0 0 0 0 0 0

Read/Write W W W W W W W W

Bit Addressing 8 8 8 8 8 8 8 8

.7 Bit 7

0 Always logic zero

PUR6 Connect/Disconnect Port 6 Pull-Up Resistor Control Bit

0 Disconnect port 6 pull-up resistor

1 Connect port 6 pull-up resistor

.5–.4 Bits 5–4

0 Always logic zero

PUR3 Connect/Disconnect Port 3 Pull-Up Resistor Control Bit

0 Disconnect port 3 pull-up resistor

1 Connect port 3 pull-up resistor

PUR2 Connect/Disconnect Port 2 Pull-Up Resistor Control Bit

0 Disconnect port 2 pull-up resistor

1 Connect port 2 pull-up resistor

PUR1 Connect/Disconnect Port 1 Pull-Up Resistor Control Bit

0 Disconnect port 1 pull-up resistor

1 Connect port 1 pull-up resistor

.0 Bit 0

0 Always logic zero

NOTE: Pull-up resistors for all I/O ports are automatically disabled when they are configured to output mode.

MEMORY MAP KS57C2302/C2304/P2304 MICROCONTROLLER

4-24

SCMOD — System Clock Mode Control Register FB7H

Bit 3 2 1 0

Identifier .3 .2 "0" .0

RESET Value 0 0 0 0

Read/Write W W W W

Bit Addressing 1 1 1 1

.3, .2 and .0 CPU Clock Selection and Main System Clock Oscillation Control Bits

0 0 0 Select main system clock (fx); enable main system clock

0 1 0 Select main system clock (fx); disable sub system clock

0 0 1 Select sub system clock (fxt); enable main system clock

1 0 1 Select sub system clock (fxt); disable main system clock

.1 Bit 1

0 Always logic zero

NOTE: SCMOD bits 3 and 0 cannot be modified simultaneously by a 4-bit instruction; they can only be modified by
separate 1-bit instructions.

KS57C2302/C2304/P2304 MICROCONTROLLER MEMORY MAP

4-25

TMOD0 — Timer/Counter 0 Mode Register F91H, F90H

Bit 7 6 5 4 3 2 1 0

Identifier "0" .6 .5 .4 .3 .2 "0" "0"

RESET Value 0 0 0 0 0 0 0 0

Read/Write W W W W W W W W

Bit Addressing 8 8 8 8 1/8 8 8 8

.7 Bit 7

0 Always logic zero

.6–.4 Timer/Counter 0 Input Clock Selection Bits

0 0 0 External clock input at TCL0 pin on rising edge

0 0 1 External clock input at TCL0 pin on falling edge

1 0 0 Select clock: fxx/210 (4.09 kHz at 4.19 MHz)

1 0 1 Select clock: fxx/28 (16.4 kHz at 4.19 MHz)

1 1 0 Select clock: fxx/26 (65.5 kHz at 4.19 MHz)

1 1 1 Select clock: fxx/24 (262 kHz at 4.19 MHz)

.3 Clear Counter and Resume Counting Control Bit

1 Clear TCNT0, IRQT0, and TOL0 and resume counting immediately
(This bit is cleared automatically when counting starts.)

.2 Enable/Disable Timer/Counter 0 Bit

0 Disable timer/counter 0; retain TCNT0 contents

1 Enable timer/counter 0

.1–.0 Bits 1–0

0 Always logic zero

MEMORY MAP KS57C2302/C2304/P2304 MICROCONTROLLER

4-26

TOE — Timer Output Enable Flag Register F92H

Bit 3 2 1 0

Identifier "u" TOE0 "u" "u"

RESET Value – 0 0 –

Read/Write – R/W – –

Bit Addressing – 1 – –

.3 Bit3

u Unknown value

TOE0 Timer/Counter 0 Output Enable Flag

0 Disable timer/counter 0 output at the TCLO0 pin

1 Enable timer/counter 0 output at the TCLO0 pin

.1–.0 Bits 1–0

u Unknown value

NOTES:
1. “u” means that the bit is unknown.

KS57C2302/C2304/P2304 MICROCONTROLLER MEMORY MAP

4-27

WDFLAG — Watchdog Timer Counter Clear Flag Register F9AH

Bit 3 2 1 0

Identifier WDTCF “0” “0” “0”

RESET Value 0 0 0 0

Read/Write W W W W

Bit Addressing 1/4 1/4 1/4 1/4

WDTCF Watchdog Timer Counter Clear Flag

1 Clears the watchdog timer counter

.2–.0 Bits 2–0

0 Always logic zero

NOTE: After watchdog timer is cleared by writing “1”, this bit is cleared to “0” automatically. Instruction that clear the
watchdog timer (“BITS WDTCF”) should be executed at proper points in a program within a given period. If not
executed within a given period and watchdog timer overflows, RESET signal is generated and system is restarted
with reset status.

MEMORY MAP KS57C2302/C2304/P2304 MICROCONTROLLER

4-28

WDMOD — Watchdog Timer Mode Register F99H, F98H

Bit 7 6 5 4 3 2 1 0

Identifier .7 .6 .5 .4 .3 .2 .1 .0

RESET Value 1 0 1 0 0 1 0 1

Read/Write W W W W W W W W

Bit Addressing 8 8 8 8 8 8 8 8

WDMOD Watchdog Timer Enable/Disable Control

5AH Disable watchdog timer function

Any other value Enable watchdog timer function

KS57C2302/C2304/P2304 MICROCONTROLLER MEMORY MAP

4-29

 WMOD — Watch Timer Mode Register F89H, F88H

Bit 7 6 5 4 3 2 1 0

Identifier .7 "0" .5 .4 .3 .2 .1 .0

RESET Value 0 0 0 0 (note) 0 0 0

Read/Write W W W W R W W W

Bit Addressing 8 8 8 8 1 8 8 8

.7 Enable/Disable Buzzer Output Bit

0 Disable buzzer (BUZ) signal output

1 Enable buzzer (BUZ) signal output

.6 Bit 6

0 Always logic zero

.5–.4 Output Buzzer Frequency Selection Bits

0 0 2 kHz buzzer (BUZ) signal output

0 1 4 kHz buzzer (BUZ) signal output

1 0 8 kHz buzzer (BUZ) signal output

1 1 16 kHz buzzer (BUZ) signal output

.3 XTin Input Level Control Bit

0 Input level to XTin pin is low; 1-bit read-only addressable for tests

1 Input level to XTin pin is high; 1-bit read-only addressable for tests

.2 Enable/Disable Watch Timer Bit

0 Disable watch timer and clear frequency dividing circuits

1 Enable watch timer

.1 Watch Timer Speed Control Bit

0 Normal speed; set IRQW to 0.5 seconds

1 High-speed operation; set IRQW to 3.91 ms

.0 Watch Timer Clock Selection Bit

0 Select system clock (fxx)/128 as the watch timer clock

1 Select a subsystem clock as the watch timer clock

NOTE: RESET sets WMOD.3 to the current input level of the subsystem clock, XTin. If the input level is high, WMOD.3

is set to logic one; if low, WMOD.3 is cleared to zero along with all the other bits in the WMOD register.

KS57C2302/C2304/P2304 MICROCONTROLLER SAM47 INSTRUCTION SET

5-1

5 SAM47 INSTRUCTION SET

OVERVIEW

The SAM47 instruction set includes 1-bit, 4-bit, and 8-bit instructions for data manipulation, logical and arithmetic
operations, program control, and CPU control. I/O instructions for peripheral hardware devices are flexible and
easy to use. Symbolic hardware names can be substituted as the instruction operand in place of the actual
address. Other important features of the SAM47 instruction set include:

— 1-byte referencing of long instructions (REF instruction)

— Redundant instruction reduction (string effect)

— Skip feature for ADC and SBC instructions

Instruction operands conform to the operand format defined for each instruction. Several instructions have
multiple operand formats.

Predefined values or labels can be used as instruction operands when addressing immediate data. Many of the
symbols for specific registers and flags may also be substituted as labels for operations such DA, mema, memb,
b, and so on. Using instruction labels can greatly simplify program writing and debugging tasks.

INSTRUCTION SET FEATURES

In this Chapter, the following SAM47 instruction set features are described in detail:

— Instruction reference area

— Instruction redundancy reduction

— Flexible bit manipulation

— ADC and SBC instruction skip condition

NOTE

The ROM size accessed by instruction may change for KS57C2302 and KS57C2304.

SAM47 INSTRUCTION SET KS57C2302/C2304/P2304 MICROCONTROLLER

5-2

Instruction Reference Area

Using the 1-byte REF (Reference) instruction, you can reference instructions stored in addresses 0020H–007FH
of program memory (the REF instruction look-up table). The location referenced by REF may contain either two
1-byte instructions or a single 2-byte instruction. The starting address of the instruction being referenced must
always be an even number.

3-byte instructions such as JP or CALL may also be referenced using REF. To reference these 3-byte
instructions, the 2-byte pseudo commands TJP and TCALL must be written in the reference.

The PC is not incremented when a REF instruction is executed. After it executes, the program's instruction
execution sequence resumes at the address immediately following the REF instruction. By using REF instructions
to execute instructions larger than one byte, as well as branches and subroutines, you can reduce the program
size. To summarize, the REF instruction can be used in three ways:

— Using the 1-byte REF instruction to execute one 2-byte or two 1-byte instructions;

— Branching to any location by referencing a branch address that is stored in the look-up table;

— Calling subroutines at any location by referencing a call address that is stored in the look-up table.

If necessary, a REF instruction can be circumvented by means of a skip operation prior to the REF in the
execution sequence. In addition, the instruction immediately following a REF can also be skipped by using an
appropriate reference instruction or instructions.

Two-byte instructions can be referenced by using a REF instruction. (An exception is XCH A,DA*)
If the MSB value of the first 1-byte instruction in the reference area is “0”, the instruction cannot be referenced by
a REF instruction. Therefore, if you use REF to reference two 1-byte instructions stored in the reference area,
specific combinations must be used for the first and second 1-byte instruction. These combinations are described
in Table5-1.

Table 5-1. Valid 1-Byte Instruction Combinations for REF Look-Ups

First 1-Byte Instruction Second 1-Byte Instruction

Instruction Operand Instruction Operand

LD A,#im INCS* R

INCS RRb

DECS* R

LD A,@RRq INCS* R

INCS RRb

DECS* R

LD @HL,A INCS* R

INCS RRb

DECS* R

NOTE: If the MSB value of the first one-byte binary code in instruction is "0", the instruction cannot be referenced by a REF
instruction.

KS57C2302/C2304/P2304 MICROCONTROLLER SAM47 INSTRUCTION SET

5-3

Reducing Instruction Redundancy

When redundant instructions such as LD A,#im and LD EA,#imm are used consecutively in a program sequence,
only the first instruction is executed. The redundant instructions which follow are ignored, that is, they are handled
like a NOP instruction. When LD HL,#imm instructions are used consecutively, redundant instructions are also
ignored.

In the following example, only the 'LD A, #im' instruction will be executed. The 8-bit load instruction which follows
it is interpreted as redundant and is ignored:

LD A,#im ; Load 4-bit immediate data (#im) to accumulator
LD EA,#imm ; Load 8-bit immediate data (#imm) to extended

; accumulator

In this example, the statements 'LD A,#2H' and 'LD A,#3H' are ignored:

BITR EMB
LD A,#1H ; Execute instruction
LD A,#2H ; Ignore, redundant instruction
LD A,#3H ; Ignore, redundant instruction
LD 23H,A ; Execute instruction, 023H ← #1H

If consecutive LD HL, #imm instructions (load 8-bit immediate data to the 8-bit memory pointer pair, HL) are
detected, only the first LD is executed and the LDs which immediately follow are ignored. For example,

LD HL,#10H ; HL ← 10H
LD HL,#20H ; Ignore, redundant instruction
LD A,#3H ; A ← 3H
LD EA,#35H ; Ignore, redundant instruction
LD @HL,A ; (10H) ← 3H

If an instruction reference with a REF instruction has a redundancy effect, the following conditions apply:

— If the instruction preceding the REF has a redundancy effect, this effect is canceled and the referenced
instruction is not skipped.

— If the instruction following the REF has a redundancy effect, the instruction following the REF is skipped.

+ + PROGRAMMING TIP — Example of the Instruction Redundancy Effect

ORG 0020H
ABC LD EA,#30H ; Stored in REF instruction reference area

ORG 0080H
 •
 •
 •
LD EA,#40H ; Redundancy effect is encountered
REF ABC ; No skip (EA ← #30H)
 •
 •
 •
REF ABC ; EA ← #30H
LD EA,#50H ; Skip

SAM47 INSTRUCTION SET KS57C2302/C2304/P2304 MICROCONTROLLER

5-4

Flexible Bit Manipulation

In addition to normal bit manipulation instructions like set and clear, the SAM47 instruction set can also perform
bit tests, bit transfers, and bit Boolean operations. Bits can also be addressed and manipulated by special bit
addressing modes. Three types of bit addressing are supported:

— mema.b

— memb.@L

— @H+DA.b

The parameters of these bit addressing modes are described in more detail in Table 5-2.

Table 5-2. Bit Addressing Modes and Parameters

Addressing Mode Addressable Peripherals Address Range

mema.b ERB, EMB, IS1, IS0, IEx, IRQx FB0H–FBFH

Ports 1, 2, 3, 6 FF0H–FFFH

memb.@L Ports 1, 2, 3, 6, and BSC FC0H–FFFH

@H+DA.b All bit-manipulable peripheral hardware All bits of the memory bank specified by
EMB and SMB that are bit-manipulable

Instructions Which Have Skip Conditions

The following instructions have a skip function when an overflow or borrow occurs:

XCHI INCS

XCHD DECS

LDI ADS

LDD SBS

If there is an overflow or borrow from the result of an increment or decrement, a skip signal is generated and a
skip is executed. However, the carry flag value is unaffected.

The instructions BTST, BTSF, and CPSE also generate a skip signal and execute a skip when they meet a skip
condition, and the carry flag value is also unaffected.

Instructions Which Affect the Carry Flag

The only instructions which do not generate a skip signal, but which do affect the carry flag are as follows:

ADC LDB C,(operand)

SBC BAND C,(operand)

SCF BOR C,(operand)

RCF BXOR C,(operand)

CCF

KS57C2302/C2304/P2304 MICROCONTROLLER SAM47 INSTRUCTION SET

5-5

ADC and SBC Instruction Skip Conditions

The instructions 'ADC A,@HL' and 'SBC A,@HL' can generate a skip signal, and set or clear the carry flag,
when they are executed in combination with the instruction 'ADS A,#im'.

If an 'ADS A,#im' instruction immediately follows an 'ADC A,@HL' or 'SBC A,@HL' instruction in a program
sequence, the ADS instruction does not skip the instruction following ADS, even if it has a skip function. If,
however, an 'ADC A,@HL' or 'SBC A,@HL' instruction is immediately followed by an 'ADS A,#im' instruction,
the ADC (or SBC) skips on overflow (or if there is no borrow) to the instruction immediately following the ADS,
and program execution continues. Table 5-3 contains additional information and examples of the 'ADC A,@HL'
and 'SBC A,@HL' skip feature.

Table 5-3. Skip Conditions for ADC and SBC Instructions

Sample
Instruction Sequences

If the result of
instruction 1 is:

Then, the execution
sequence is:

Reason

ADC A,@HL
ADS A,#im
xxx
xxx

1
2
3
4

Overflow

No overflow

1, 3, 4

1, 2, 3, 4

ADS cannot skip
instruction 3, even if it
has a skip function.

SBC A,@HL
ADS A,#im
xxx
xxx

1
2
3
4

Borrow

No borrow

1, 2, 3, 4

1, 3, 4

ADS cannot skip
instruction 3, even if it
has a skip function.

SAM47 INSTRUCTION SET KS57C2302/C2304/P2304 MICROCONTROLLER

5-6

SYMBOLS and CONVENTIONS

Table 5-4. Data Type Symbols

Symbol Data Type

d Immediate data

a Address data

b Bit data

r Register data

f Flag data

i Indirect addressing data

t memc × 0.5 immediate data

Table 5-5. Register Identifiers

Full Register Name ID

4-bit accumulator A

4-bit working registers E, L, H, X, W,
Z, Y

8-bit extended accumulator EA

8-bit memory pointer HL

8-bit working registers WX, YZ, WL

Select register bank 'n' SRB n

Select memory bank 'n' SMB n

Carry flag C

Program status word PSW

Port 'n' Pn

'm'-th bit of port 'n' Pn.m

Interrupt priority register IPR

Enable memory bank flag EMB

Enable register bank flag ERB

Table 5-6. Instruction Operand Notation

Symbol Definition

DA Direct address

@ Indirect address prefix

src Source operand

dst Destination operand

(R) Contents of register R

.b Bit location

im 4-bit immediate data (number)

imm 8-bit immediate data (number)

Immediate data prefix

ADR 000H–1FFFH immediate address

ADRn 'n' bit address

R A, E, L, H, X, W, Z, Y

Ra E, L, H, X, W, Z, Y

RR EA, HL, WX, YZ

RRa HL, WX, WL

RRb HL, WX, YZ

RRc WX, WL

mema FB0H–FBFH, FF0H–FFFH

memb FC0H–FFFH

memc Code direct addressing:
0020H–007FH

SB Select bank register (8 bits)

XOR Logical exclusive-OR

OR Logical OR

AND Logical AND

[(RR)] Contents addressed by RR

KS57C2302/C2304/P2304 MICROCONTROLLER SAM47 INSTRUCTION SET

5-7

OPCODE DEFINITIONS

Table 5-7. Opcode Definitions (Direct)

Register r2 r1 r0

A 0 0 0

E 0 0 1

L 0 1 0

H 0 1 1

X 1 0 0

W 1 0 1

Z 1 1 0

Y 1 1 1

EA 0 0 0

HL 0 1 0

WX 1 0 0

YZ 1 1 0

r = Immediate data for register

Table 5-8. Opcode Definitions (Indirect)

Register i2 i1 i0

@HL 1 0 1

@WX 1 1 0

@WL 1 1 1

i = Immediate data for indirect addressing

CALCULATING ADDITIONAL MACHINE CYCLES FOR SKIPS

A machine cycle is defined as one cycle of the selected CPU clock. Three different clock rates can be selected
using the PCON register.

In this document, the letter 'S' is used in tables when describing the number of additional machine cycles required
for an instruction to execute, given that the instruction has a skip function ('S' = skip). The addition number of
machine cycles that will be required to perform the skip usually depends on the size of the instruction being
skipped — whether it is a 1-byte, 2-byte, or 3-byte instruction. A skip is also executed for SMB and SRB
instructions.

The values in additional machine cycles for 'S' for the three cases in which skip conditions occur are as follows:

Case 1: No skip S = 0 cycles

Case 2: Skip is 1-byte or 2-byte instruction S = 1 cycle

Case 3: Skip is 3-byte instruction S = 2 cycles

NOTE: REF instructions are skipped in one machine cycle.

SAM47 INSTRUCTION SET KS57C2302/C2304/P2304 MICROCONTROLLER

5-8

HIGH-LEVEL SUMMARY

This Chapter contains a high-level summary of the SAM47 instruction set in table format. The tables are
designed to familiarize you with the range of instructions that are available in each instruction category.

These tables are a useful quick-reference resource when writing application programs.

If you are reading this user's manual for the first time, however, you may want to scan this detailed information
briefly, and then return to it later on. The following information is provided for each instruction:

— Instruction name

— Operand(s)

— Brief operation description

— Number of bytes of the instruction and operand(s)

— Number of machine cycles required to execute the instruction

The tables in this Chapter are arranged according to the following instruction categories:

— CPU control instructions

— Program control instructions

— Data transfer instructions

— Logic instructions

— Arithmetic instructions

— Bit manipulation instructions

KS57C2302/C2304/P2304 MICROCONTROLLER SAM47 INSTRUCTION SET

5-9

Table 5-9. CPU Control Instructions — High-Level Summary

Name Operand Operation Description Bytes Cycles

SCF Set carry flag to logic one 1 1

RCF Reset carry flag to logic zero 1 1

CCF Complement carry flag 1 1

EI Enable all interrupts 2 2

DI Disable all interrupts 2 2

IDLE Engage CPU idle mode 2 2

STOP Engage CPU stop mode 2 2

NOP No operation 1 1

SMB n Select memory bank 2 2

SRB n Select register bank 2 2

REF memc Reference code 1 3

VENTn EMB (0,1)
ERB (0,1)
ADR

Load enable memory bank flag (EMB) and the enable
register bank flag (ERB) and program counter to vector
address, then branch to the corresponding location

2 2

Table 5-10. Program Control Instructions — High-Level Summary

Name Operand Operation Description Bytes Cycles

CPSE R,#im Compare and skip if register equals #im 2 2 + S

@HL,#im Compare and skip if indirect data memory equals #im 2 2 + S

A,R Compare and skip if A equals R 2 2 + S

A,@HL Compare and skip if A equals indirect data memory 1 1 + S

EA,@HL Compare and skip if EA equals indirect data memory 2 2 + S

EA,RR Compare and skip if EA equals RR 2 2 + S

JP ADR12 Jump to direct address (12 bits) 3 3

JPS ADR12 Jump direct in page (12 bits) 2 2

JR #im Jump to immediate address 1 2

@WX Branch relative to WX register 2 3

@EA Branch relative to EA 2 3

CALL ADR12 Call direct address (12 bits) 3 4

CALLS ADR11 Call direct address within 2 K (11 bits) 2 3

RET – Return from subroutine 1 3

IRET – Return from interrupt 1 3

SRET – Return from subroutine and skip 1 3 + S

SAM47 INSTRUCTION SET KS57C2302/C2304/P2304 MICROCONTROLLER

5-10

Table 5-11. Data Transfer Instructions — High-Level Summary

Name Operand Operation Description Bytes Cycles

XCH A,DA Exchange A and direct data memory contents 2 2

A,Ra Exchange A and register (Ra) contents 1 1

A,@RRa Exchange A and indirect data memory 1 1

EA,DA Exchange EA and direct data memory contents 2 2

EA,RRb Exchange EA and register pair (RRb) contents 2 2

EA,@HL Exchange EA and indirect data memory contents 2 2

XCHI A,@HL Exchange A and indirect data memory contents;
increment contents of register L and skip on carry

1 2 + S

XCHD A,@HL Exchange A and indirect data memory contents;
decrement contents of register L and skip on carry

1 2 + S

LD A,#im Load 4-bit immediate data to A 1 1

A,@RRa Load indirect data memory contents to A 1 1

A,DA Load direct data memory contents to A 2 2

A,Ra Load register contents to A 2 2

Ra,#im Load 4-bit immediate data to register 2 2

RR,#imm Load 8-bit immediate data to register 2 2

DA,A Load contents of A to direct data memory 2 2

Ra,A Load contents of A to register 2 2

EA,@HL Load indirect data memory contents to EA 2 2

EA,DA Load direct data memory contents to EA 2 2

EA,RRb Load register contents to EA 2 2

@HL,A Load contents of A to indirect data memory 1 1

DA,EA Load contents of EA to data memory 2 2

RRb,EA Load contents of EA to register 2 2

@HL,EA Load contents of EA to indirect data memory 2 2

LDI A,@HL Load indirect data memory to A; increment register L
contents and skip on carry

1 2 + S

LDD A,@HL Load indirect data memory contents to A; decrement
register L contents and skip on carry

1 2 + S

LDC EA,@WX Load code byte from WX to EA 1 3

EA,@EA Load code byte from EA to EA 1 3

RRC A Rotate right through carry bit 1 1

PUSH RR Push register pair onto stack 1 1

SB Push SMB and SRB values onto stack 2 2

POP RR Pop to register pair from stack 1 1

SB Pop SMB and SRB values from stack 2 2

KS57C2302/C2304/P2304 MICROCONTROLLER SAM47 INSTRUCTION SET

5-11

Table 5-12. Logic Instructions — High-Level Summary

Name Operand Operation Description Bytes Cycles

AND A,#im Logical-AND A immediate data to A 2 2

A,@HL Logical-AND A indirect data memory to A 1 1

EA,RR Logical-AND register pair (RR) to EA 2 2

RRb,EA Logical-AND EA to register pair (RRb) 2 2

OR A, #im Logical-OR immediate data to A 2 2

A, @HL Logical-OR indirect data memory contents to A 1 1

EA,RR Logical-OR double register to EA 2 2

RRb,EA Logical-OR EA to double register 2 2

XOR A,#im Exclusive-OR immediate data to A 2 2

A,@HL Exclusive-OR indirect data memory to A 1 1

EA,RR Exclusive-OR register pair (RR) to EA 2 2

RRb,EA Exclusive-OR register pair (RRb) to EA 2 2

COM A Complement accumulator (A) 2 2

Table 5-13. Arithmetic Instructions — High-Level Summary

Name Operand Operation Description Bytes Cycles

ADC A,@HL Add indirect data memory to A with carry 1 1

EA,RR Add register pair (RR) to EA with carry 2 2

RRb,EA Add EA to register pair (RRb) with carry 2 2

ADS A, #im Add 4-bit immediate data to A and skip on carry 1 1 + S

EA,#imm Add 8-bit immediate data to EA and skip on carry 2 2 + S

A,@HL Add indirect data memory to A and skip on carry 1 1 + S

EA,RR Add register pair (RR) contents to EA and skip on carry 2 2 + S

RRb,EA Add EA to register pair (RRb) and skip on carry 2 2 + S

SBC A,@HL Subtract indirect data memory from A with carry 1 1

EA,RR Subtract register pair (RR) from EA with carry 2 2

RRb,EA Subtract EA from register pair (RRb) with carry 2 2

SBS A,@HL Subtract indirect data memory from A; skip on borrow 1 1 + S

EA,RR Subtract register pair (RR) from EA; skip on borrow 2 2 + S

RRb,EA Subtract EA from register pair (RRb); skip on borrow 2 2 + S

DECS R Decrement register (R); skip on borrow 1 1 + S

RR Decrement register pair (RR); skip on borrow 2 2 + S

INCS R Increment register (R); skip on carry 1 1 + S

DA Increment direct data memory; skip on carry 2 2 + S

@HL Increment indirect data memory; skip on carry 2 2 + S

RRb Increment register pair (RRb); skip on carry 1 1 + S

SAM47 INSTRUCTION SET KS57C2302/C2304/P2304 MICROCONTROLLER

5-12

Table 5-14. Bit Manipulation Instructions — High-Level Summary

Name Operand Operation Description Bytes Cycles

BTST C Test specified bit and skip if carry flag is set 1 1 + S

DA.b Test specified bit and skip if memory bit is set 2 2 + S

mema.b

memb.@L

@H+DA.b

BTSF DA.b Test specified memory bit and skip if bit equals "0"

mema.b

memb.@L

@H+DA.b

BTSTZ mema.b Test specified bit; skip and clear if memory bit is set

memb.@L

@H+DA.b

BITS DA.b Set specified memory bit 2 2

mema.b

memb.@L

@H+DA.b

BITR DA.b Clear specified memory bit to logic zero

mema.b

memb.@L

@H+DA.b

BAND C,mema.b Logical-AND carry flag with specified memory bit

C,memb.@L

C,@H+DA.b

BOR C,mema.b Logical-OR carry with specified memory bit

C,memb.@L

C,@H+DA.b

BXOR C,mema.b Exclusive-OR carry with specified memory bit

C,memb.@L

C,@H+DA.b

LDB mema.b,C Load carry bit to a specified memory bit

memb.@L,C Load carry bit to a specified indirect memory bit

@H+DA.b,C

C,mema.b Load specified memory bit to carry bit

C,memb.@L Load specified indirect memory bit to carry bit

C,@H+DA.b

KS57C2302/C2304/P2304 MICROCONTROLLER SAM47 INSTRUCTION SET

5-13

BINARY CODE SUMMARY

This Chapter contains binary code values and operation notation for each instruction in the SAM47 instruction set
in an easy-to-read, tabular format. It is intended to be used as a quick-reference source for programmers who are
experienced with the SAM47 instruction set. The same binary values and notation are also included in the
detailed descriptions of individual instructions later in Chapter 5.

If you are reading this user's manual for the first time, please just scan this very detailed information briefly. Most
of the general information you will need to write application programs can be found in the high-level summary
tables in the previous Chapter. The following information is provided for each instruction:

— Instruction name

— Operand(s)

— Binary values

— Operation notation

The tables in this Chapter are arranged according to the following instruction categories:

— CPU control instructions

— Program control instructions

— Data transfer instructions

— Logic instructions

— Arithmetic instructions

— Bit manipulation instructions

SAM47 INSTRUCTION SET KS57C2302/C2304/P2304 MICROCONTROLLER

5-14

Table 5-15. CPU Control Instructions — Binary Code Summary

Name Operand Binary Code Operation Notation

SCF 1 1 1 0 0 1 1 1 C ← 1

RCF 1 1 1 0 0 1 1 0 C ← 0

CCF 1 1 0 1 0 1 1 0 C ← C

EI 1 1 1 1 1 1 1 1 IME ← 1

1 0 1 1 0 0 1 0

DI 1 1 1 1 1 1 1 0 IME ← 0

1 0 1 1 0 0 1 0

IDLE 1 1 1 1 1 1 1 1 PCON.2 ← 1

1 0 1 0 0 0 1 1

STOP 1 1 1 1 1 1 1 1 PCON.3 ← 1

1 0 1 1 0 0 1 1

NOP 1 0 1 0 0 0 0 0 No operation

SMB n 1 1 0 1 1 1 0 1 SMB ← n (n = 0, 1, 15)

0 1 0 0 d3 d2 d1 d0

SRB n 1 1 0 1 1 1 0 1 SRB ← n (n = 0, 1, 2, 3)

0 1 0 1 0 0 d1 d0

REF memc t7 t6 t5 t4 t3 t2 t1 t0 PC11–0 = memc7–4, memc3–0 <1

VENTn EMB (0,1)
ERB (0,1)
ADR

E
M
B

E
R
B

0 0 a11 a10 a9 a8 ROM (2 x n) 7–6 ← EMB, ERB
ROM (2 x n) 5–4 ← 0
ROM (2 x n) 3–0 ← PC11–8
ROM (2 x n + 1) 7–0 ← PC7–0
(n = 0, 1, 2, 3, 4, 5, 6, 7)

a7 a6 a5 a4 a3 a2 a1 a0

KS57C2302/C2304/P2304 MICROCONTROLLER SAM47 INSTRUCTION SET

5-15

Table 5-16. Program Control Instructions — Binary Code Summary

Name Operand Binary Code Operation Notation

CPSE R,#im 1 1 0 1 1 0 0 1 Skip if R = im

d3 d2 d1 d0 0 r2 r1 r0

@HL,#im 1 1 0 1 1 1 0 1 Skip if (HL) = im

0 1 1 1 d3 d2 d1 d0

A,R 1 1 0 1 1 1 0 1 Skip if A = R

0 1 1 0 1 r2 r1 r0

A,@HL 0 0 1 1 1 0 0 0 Skip if A = (HL)

EA,@HL 1 1 0 1 1 1 0 0 Skip if A = (HL), E = (HL+1)

0 0 0 0 1 0 0 1

EA,RR 1 1 0 1 1 1 0 0 Skip if EA = RR

1 1 1 0 1 r2 r1 0

JP ADR12 1 1 0 1 1 0 1 1 PC11–0 ← ADR12

0 0 0 0 a11 a10 a9 a8

a7 a6 a5 a4 a3 a2 a1 a0

JPS ADR12 1 0 0 1 a11 a10 a9 a8 PC11–0 ← ADR12

a7 a6 a5 a4 a3 a2 a1 a0

JR #im * PC11–0 ← ADR (PC–15 to PC+16)

@WX 1 1 0 1 1 1 0 1 PC11–0 ← PC11–8 + (WX)

0 1 1 0 0 1 0 0

@EA 1 1 0 1 1 1 0 1 PC11–0 ← PC11–8 + (EA)

0 1 1 0 0 0 0 0

CALL ADR12 1 1 0 1 1 0 1 1 [(SP–1) (SP–2)] ← EMB, ERB
[(SP–3) (SP–4)] ← PC7–0

0 1 0 0 a11 a10 a9 a8 [(SP–5) (SP–6)] ← PC11–8
SP ← SP - 6

a7 a6 a5 a4 a3 a2 a1 a0 PC11–0 ← ADR12

CALLS ADR11 1 1 1 0 1 a10 a9 a8 [(SP–1) (SP–2)] ← EMB, ERB
[(SP–3) (SP–4)] ← PC7–0
[(SP–5) (SP–6)] ← PC11–8

a7 a6 a5 a4 a3 a2 a1 a0 SP ← SP - 6
PC11 ← 0
PC10–0 ← ADR11

First Byte Condition

* JR #im 0 0 0 1 a3 a2 a1 a0 PC ← PC+2 to PC+16

0 0 0 0 a3 a2 a1 a0 PC ← PC–1 to PC–15

SAM47 INSTRUCTION SET KS57C2302/C2304/P2304 MICROCONTROLLER

5-16

Table 5-16. Program Control Instructions — Binary Code Summary (Continued)

Name Operand Binary Code Operation Notation

RET – 1 1 0 0 0 1 0 1 PC11–8 ← (SP + 1) (SP)
PC7–0← (SP + 2) (SP + 3)
EMB,ERB ← (SP + 5) (SP + 4)
SP ← SP + 6

IRET – 1 1 0 1 0 1 0 1 PC11–8 ← (SP + 1) (SP)
PC7–0 ← (SP + 2) (SP + 3)
PSW ← (SP + 4) (SP + 5)
SP ← SP + 6

SRET – 1 1 1 0 0 1 0 1 PC11–8 ← (SP + 1) (SP)
PC7–0 ← (SP + 3) (SP + 2)
EMB,ERB ← (SP + 5) (SP + 4)
SP ← SP + 6, then skip

Table 5-17. Data Transfer Instructions — Binary Code Summary

Name Operand Binary Code Operation Notation

XCH A,DA 0 1 1 1 1 0 0 1 A ↔ DA

a7 a6 a5 a4 a3 a2 a1 a0

A,Ra 0 1 1 0 1 r2 r1 r0 A ↔ Ra

A,@RRa 0 1 1 1 1 i2 i1 i0 A ↔ (RRa)

EA,DA 1 1 0 0 1 1 1 1 A ↔ DA,E ↔ DA + 1

a7 a6 a5 a4 a3 a2 a1 a0

EA,RRb 1 1 0 1 1 1 0 0 EA ↔ RRb

1 1 1 0 0 r2 r1 0

EA,@HL 1 1 0 1 1 1 0 0 A ↔ (HL), E ↔ (HL + 1)

0 0 0 0 0 0 0 1

XCHI A,@HL 0 1 1 1 1 0 1 0 A ↔ (HL), then L ← L+1;
skip if L = 0H

XCHD A,@HL 0 1 1 1 1 0 1 1 A ↔ (HL), then L ← L-1;
skip if L = 0FH

LD A,#im 1 0 1 1 d3 d2 d1 d0 A ← im

A,@RRa 1 0 0 0 1 i2 i1 i0 A ← (RRa)

A,DA 1 0 0 0 1 1 0 0 A ← DA

a7 a6 a5 a4 a3 a2 a1 a0

A,Ra 1 1 0 1 1 1 0 1 A ← Ra

0 0 0 0 1 r2 r1 r0

KS57C2302/C2304/P2304 MICROCONTROLLER SAM47 INSTRUCTION SET

5-17

Table 5-17. Data Transfer Instructions — Binary Code Summary (Continued)

Name Operand Binary Code Operation Notation

LD Ra,#im 1 1 0 1 1 0 0 1 Ra ← im

d3 d2 d1 d0 1 r2 r1 r0

RR,#imm 1 0 0 0 0 r2 r1 1 RR ← imm

d7 d6 d5 d4 d3 d2 d1 d0

DA,A 1 0 0 0 1 0 0 1 DA ← A

a7 a6 a5 a4 a3 a2 a1 a0

Ra,A 1 1 0 1 1 1 0 1 Ra ← A

0 0 0 0 0 r2 r1 r0

EA,@HL 1 1 0 1 1 1 0 0 A ← (HL), E ← (HL + 1)

0 0 0 0 1 0 0 0

EA,DA 1 1 0 0 1 1 1 0 A ← DA, E ← DA + 1

a7 a6 a5 a4 a3 a2 a1 a0

EA,RRb 1 1 0 1 1 1 0 0 EA ← RRb

1 1 1 1 1 r2 r1 0

@HL,A 1 1 0 0 0 1 0 0 (HL) ← A

DA,EA 1 1 0 0 1 1 0 1 DA ← A, DA + 1 ←E

a7 a6 a5 a4 a3 a2 a1 a0

RRb,EA 1 1 0 1 1 1 0 0 RRb ← EA

1 1 1 1 0 r2 r1 0

@HL,EA 1 1 0 1 1 1 0 0 (HL) ← A, (HL + 1) ← E

0 0 0 0 0 0 0 0

LDI A,@HL 1 0 0 0 1 0 1 0 A ← (HL), then L ← L+1;
skip if L = 0H

LDD A,@HL 1 0 0 0 1 0 1 1 A ← (HL), then L ← L–1;
skip if L = 0FH

LDC EA,@WX 1 1 0 0 1 1 0 0 EA ← [PC11–8 + (WX)]

EA,@EA 1 1 0 0 1 0 0 0 EA ← [PC11–8 + (EA)]

RRC A 1 0 0 0 1 0 0 0 C ← A.0, A3 ← C
A.n–1 ← A.n (n = 1, 2, 3)

PUSH RR 0 0 1 0 1 r2 r1 1 ((SP–1)) ((SP–2)) ← (RR),
(SP) ← (SP)–2

SB 1 1 0 1 1 1 0 1 ((SP–1)) ← (SMB), ((SP–2)) ←(SRB),
(SP) ← (SP)–2

0 1 1 0 0 1 1 1

SAM47 INSTRUCTION SET KS57C2302/C2304/P2304 MICROCONTROLLER

5-18

Table 5-17. Data Transfer Instructions — Binary Code Summary (Concluded)

Name Operand Binary Code Operation Notation

POP RR 0 0 1 0 1 r2 r1 0 RRL ← (SP), RRH ← (SP + 1)
SP ← SP + 2

SB 1 1 0 1 1 1 0 1 (SRB) ← (SP), SMB ← (SP + 1),
SP ← SP + 2

0 1 1 0 0 1 1 0

Table 5-18. Logic Instructions — Binary Code Summary

Name Operand Binary Code Operation Notation

AND A,#im 1 1 0 1 1 1 0 1 A ← A AND im

0 0 0 1 d3 d2 d1 d0

A,@HL 0 0 1 1 1 0 0 1 A ← A AND (HL)

EA,RR 1 1 0 1 1 1 0 0 EA ← EA AND RR

0 0 0 1 1 r2 r1 0

RRb,EA 1 1 0 1 1 1 0 0 RRb ← RRb AND EA

0 0 0 1 0 r2 r1 0

OR A, #im 1 1 0 1 1 1 0 1 A ← A OR im

0 0 1 0 d3 d2 d1 d0

A, @HL 0 0 1 1 1 0 1 0 A ← A OR (HL)

EA,RR 1 1 0 1 1 1 0 0 EA ← EA OR RR

0 0 1 0 1 r2 r1 0

RRb,EA 1 1 0 1 1 1 0 0 RRb ← RRb OR EA

0 0 1 0 0 r2 r1 0

XOR A,#im 1 1 0 1 1 1 0 1 A ← A XOR im

0 0 1 1 d3 d2 d1 d0

A,@HL 0 0 1 1 1 0 1 1 A ← A XOR (HL)

EA,RR 1 1 0 1 1 1 0 0 EA ← EA XOR (RR)

0 0 1 1 0 r2 r1 0

RRb,EA 1 1 0 1 1 1 0 0 RRb ← RRb XOR EA

0 0 1 1 0 r2 r1 0

COM A 1 1 0 1 1 1 0 1 A ← A

0 0 1 1 1 1 1 1

KS57C2302/C2304/P2304 MICROCONTROLLER SAM47 INSTRUCTION SET

5-19

Table 5-19. Arithmetic Instructions — Binary Code Summary

Name Operand Binary Code Operation Notation

ADC A,@HL 0 0 1 1 1 1 1 0 C, A ← A + (HL) + C

EA,RR 1 1 0 1 1 1 0 0 C, EA ← EA + RR + C

1 0 1 0 1 r2 r1 0

RRb,EA 1 1 0 1 1 1 0 0 C, RRb ← RRb + EA + C

1 0 1 0 0 r2 r1 0

ADS A, #im 1 0 1 0 d3 d2 d1 d0 A ← A + im; skip on carry

EA,#imm 1 1 0 0 1 0 0 1 EA ← EA + imm; skip on carry

d7 d6 d5 d4 d3 d2 d1 d0

A,@HL 0 0 1 1 1 1 1 1 A ← A+ (HL); skip on carry

EA,RR 1 1 0 1 1 1 0 0 EA ← EA + RR; skip on carry

1 0 0 1 1 r2 r1 0

RRb,EA 1 1 0 1 1 1 0 0 RRb ← RRb + EA; skip on carry

1 0 0 1 0 r2 r1 0

SBC A,@HL 0 0 1 1 1 1 0 0 C,A ← A – (HL) – C

EA,RR 1 1 0 1 1 1 0 0 C, EA ← EA –RR – C

1 1 0 0 1 r2 r1 0

RRb,EA 1 1 0 1 1 1 0 0 C,RRb ← RRb – EA – C

1 1 0 0 0 r2 r1 0

SBS A,@HL 0 0 1 1 1 1 0 1 A ← A – (HL); skip on borrow

EA,RR 1 1 0 1 1 1 0 0 EA ← EA – RR; skip on borrow

1 0 1 1 1 r2 r1 0

RRb,EA 1 1 0 1 1 1 0 0 RRb ← RRb – EA; skip on borrow

1 0 1 1 0 r2 r1 0

DECS R 0 1 0 0 1 r2 r1 r0 R ← R–1; skip on borrow

RR 1 1 0 1 1 1 0 0 RR ← RR–1; skip on borrow

1 1 0 1 1 r2 r1 0

INCS R 0 1 0 1 1 r2 r1 r0 R ← R + 1; skip on carry

DA 1 1 0 0 1 0 1 0 DA ← DA + 1; skip on carry

a7 a6 a5 a4 a3 a2 a1 a0

@HL 1 1 0 1 1 1 0 1 (HL) ← (HL) + 1; skip on carry

0 1 1 0 0 0 1 0

RRb 1 0 0 0 0 r2 r1 0 RRb ← RRb + 1; skip on carry

SAM47 INSTRUCTION SET KS57C2302/C2304/P2304 MICROCONTROLLER

5-20

Table 5-20. Bit Manipulation Instructions — Binary Code Summary

Name Operand Binary Code Operation Notation

BTST C 1 1 0 1 0 1 1 1 Skip if C = 1

DA.b 1 1 b1 b0 0 0 1 1 Skip if DA.b = 1

a7 a6 a5 a4 a3 a2 a1 a0

mema.b * 1 1 1 1 1 0 0 1 Skip if mema.b = 1

memb.@L 1 1 1 1 1 0 0 1 Skip if [memb.7–2 + L.3–2].
[L.1–0] = 1

0 1 0 0 a5 a4 a3 a2

@H+DA.b 1 1 1 1 1 0 0 1 Skip if [H + DA.3–0].b = 1

0 0 b1 b0 a3 a2 a1 a0

BTSF DA.b 1 1 b1 b0 0 0 1 0 Skip if DA.b = 0

a7 a6 a5 a4 a3 a2 a1 a0

mema.b * 1 1 1 1 1 0 0 0 Skip if mema.b = 0

memb.@L 1 1 1 1 1 0 0 0 Skip if [memb.7–2 + L.3–2].
[L.1–0] = 0

0 1 0 0 a5 a4 a3 a2

@H DA.b 1 1 1 1 1 0 0 0 Skip if [H + DA.3–0].b = 0

0 0 b1 b0 a3 a2 a1 a0

BTSTZ mema.b * 1 1 1 1 1 1 0 1 Skip if mema.b = 1 and clear

memb.@L 1 1 1 1 1 1 0 1 Skip if [memb.7–2 + L.3–2].
[L.1–0] = 1 and clear

0 1 0 0 a5 a4 a3 a2

@H+DA.b 1 1 1 1 1 1 0 1 Skip if [H + DA.3–0].b =1 and clear

0 0 b1 b0 a3 a2 a1 a0

BITS DA.b 1 1 b1 b0 0 0 0 1 DA.b ← 1

a7 a6 a5 a4 a3 a2 a1 a0

mema.b * 1 1 1 1 1 1 1 1 mema.b ← 1

memb.@L 1 1 1 1 1 1 1 1 [memb.7–2 + L.3–2].b [L.1–0] ← 1

0 1 0 0 a5 a4 a3 a2

@H+DA.b 1 1 1 1 1 1 1 1 [H + DA.3–0].b ← 1

0 0 b1 b0 a3 a2 a1 a0

KS57C2302/C2304/P2304 MICROCONTROLLER SAM47 INSTRUCTION SET

5-21

Table 5-20. Bit Manipulation Instructions — Binary Code Summary (Continued)

Name Operand Binary Code Operation Notation

BITR DA.b 1 1 b1 b0 0 0 0 0 DA.b ← 0

a7 a6 a5 a4 a3 a2 a1 a0

mema.b * 1 1 1 1 1 1 1 0 mema.b ← 0

memb.@L 1 1 1 1 1 1 1 0 [memb.7–2 + L3–2].[L.1–0] ← 0

0 1 0 0 a5 a4 a3 a2

@H+DA.b 1 1 1 1 1 1 1 0 [H + DA.3–0].b ← 0

0 0 b1 b0 a3 a2 a1 a0

BAND C,mema.b * 1 1 1 1 0 1 0 1 C ← C AND mema.b

C,memb.@L 1 1 1 1 0 1 0 1 C ← C AND [memb.7–2 + L.3–2].
[L.1–0]

0 1 0 0 a5 a4 a3 a2

C,@H+DA.b 1 1 1 1 0 1 0 1 C ← C AND [H + DA.3–0].b

0 0 b1 b0 a3 a2 a1 a0

BOR C,mema.b * 1 1 1 1 0 1 1 0 C ← C OR mema.b

C,memb.@L 1 1 1 1 0 1 1 0 C ← C OR [memb.7–2 + L.3–2].
[L.1–0]

0 1 0 0 a5 a4 a3 a2

C,@H+DA.b 1 1 1 1 0 1 1 0 C ← C OR [H + DA.3–0].b

0 0 b1 b0 a3 a2 a1 a0

BXOR C,mema.b * 1 1 1 1 0 1 1 1 C ← C XOR mema.b

C,memb.@L 1 1 1 1 0 1 1 1 C ← C XOR [memb.7–2 + L.3–2].
[L.1–0]

0 1 0 0 a5 a4 a3 a2

C,@H+DA.b 1 1 1 1 0 1 1 1 C ← C XOR [H + DA.3–0].b

0 0 b1 b0 a3 a2 a1 a0

Second Byte Bit Addresses

* mema.b 1 0 b1 b0 a3 a2 a1 a0 FB0H–FBFH

1 1 b1 b0 a3 a2 a1 a0 FF1H–FF9H

SAM47 INSTRUCTION SET KS57C2302/C2304/P2304 MICROCONTROLLER

5-22

Table 5-20. Bit Manipulation Instructions — Binary Code Summary (Concluded)

Name Operand Binary Code Operation Notation

LDB mema.b,C * 1 1 1 1 1 1 0 0 mema.b ← C

memb.@L,C 1 1 1 1 1 1 0 0 memb.7–2 + [L.3–2]. [L.1–0] ← C

0 1 0 0 a5 a4 a3 a2

@H+DA.b,C 1 1 1 1 1 1 0 0 H + [DA.3–0].b ← (C)

0 b2 b1 b0 a3 a2 a1 a0

C,mema.b * 1 1 1 1 0 1 0 0 C ← mema.b

C,memb.@L 1 1 1 1 0 1 0 0 C ← memb.7–2 + [L.3–2] . [L.1–0]

0 1 0 0 a5 a4 a3 a2

C,@H+DA.b 1 1 1 1 0 1 0 0 C ← [H + DA.3–0].b

0 b2 b1 b0 a3 a2 a1 a0

Second Byte Bit Addresses

* mema.b 1 0 b1 b0 a3 a2 a1 a0 FB0H–FBFH

1 1 b1 b0 a3 a2 a1 a0 FF0H–FFFH

KS57C2302/C2304/P2304 MICROCONTROLLER SAM47 INSTRUCTION SET

5-23

INSTRUCTION DESCRIPTIONS

This Chapter contains detailed information and programming examples for each instruction of the SAM47
instruction set. Information is arranged in a consistent format to improve readability and for use as a quick-
reference resource for application programmers.

If you are reading this user's manual for the first time, please just scan this very detailed information briefly in
order to acquaint yourself with the basic features of the instruction set. The information elements of the
instruction description format are as follows:

— Instruction name (mnemonic)

— Full instruction name

— Source/destination format of the instruction operand

— Operation overview (from the "High-Level Summary" table)

— Textual description of the instruction's effect

— Binary code overview (from the "Binary Code Summary" table)

— Programming example(s) to show how the instruction is used

SAM47 INSTRUCTION SET KS57C2302/C2304/P2304 MICROCONTROLLER

5-24

ADC — Add With Carry

ADC dst,src

Operation: Operand Operation Summary Bytes Cycles

A,@HL Add indirect data memory to A with carry 1 1

EA,RR Add register pair (RR) to EA with carry 2 2

RRb,EA Add EA to register pair (RRb) with carry 2 2

Description: The source operand, along with the setting of the carry flag, is added to the destination operand
and the sum is stored in the destination. The contents of the source are unaffected. If there is an
overflow from the most significant bit of the result, the carry flag is set; otherwise, the carry flag
is cleared.

If 'ADC A,@HL' is followed by an 'ADS A,#im' instruction in a program, ADC skips the ADS
instruction if an overflow occurs. If there is no overflow, the ADS instruction is executed normally.
(This condition is valid only for 'ADC A,@HL' instructions. If an overflow occurs following an
'ADS A,#im' instruction, the next instruction will not be skipped.)

Operand Binary Code Operation Notation

A,@HL 0 0 1 1 1 1 1 0 C, A ← A + (HL) + C

EA,RR 1 1 0 1 1 1 0 0 C, EA ← EA + RR + C

1 0 1 0 1 r2 r1 0

RRb,EA 1 1 0 1 1 1 0 0 C, RRb ← RRb + EA + C

1 0 1 0 0 r2 r1 0

Examples: 1. The extended accumulator contains the value 0C3H, register pair HL the value 0AAH, and the
carry flag is set to "1":

SCF ; C ← "1"
ADC EA,HL ; EA ← 0C3H + 0AAH + 1H = 6EH, C ← "1"
JPS XXX ; Jump to XXX; no skip after ADC

2. If the extended accumulator contains the value 0C3H, register pair HL the value 0AAH, and
the

carry flag is cleared to "0":

RCF ; C ← "0"
ADC EA,HL ; EA ← 0C3H + 0AAH + 0H = 6EH, C ← "1"
JPS XXX ; Jump to XXX; no skip after ADC

KS57C2302/C2304/P2304 MICROCONTROLLER SAM47 INSTRUCTION SET

5-25

ADC — Add With Carry

ADC (Continued)

Examples: 3. If ADC A,@HL is followed by an ADS A,#im, the ADC skips on carry to the instruction
immediately after the ADS. An ADS instruction immediately after the ADC does not skip
even if an overflow occurs. This function is useful for decimal adjustment operations.

a. 8 + 9 decimal addition (the contents of the address specified by the HL register is 9H):

RCF ; C ← "0"
LD A,#8H ; A ← 8H
ADS A,#6H ; A ← 8H + 6H = 0EH
ADC A,@HL ; A ← 7H, C ← "1"
ADS A,#0AH ; Skip this instruction because C = "1" after ADC result
JPS XXX

b. 3 + 4 decimal addition (the contents of the address specified by the HL register is 4H):

RCF ; C ← "0"
LD A,#3H ; A ← 3H
ADS A,#6H ; A ← 3H + 6H = 9H
ADC A,@HL ; A ← 9H + 4H + C(0) = 0DH
ADS A,#0AH ; No skip. A ← 0DH + 0AH = 7H

; (The skip function for 'ADS A,#im' is inhibited after an
; 'ADC A,@HL' instruction even if an overflow occurs.)

JPS XXX

SAM47 INSTRUCTION SET KS57C2302/C2304/P2304 MICROCONTROLLER

5-26

ADS — Add And Skip On Overflow

ADS dst,src

Operation: Operand Operation Summary Bytes Cycles

A, #im Add 4-bit immediate data to A and skip on overflow 1 1 + S

EA,#imm Add 8-bit immediate data to EA and skip on overflow 2 2 + S

A,@HL Add indirect data memory to A and skip on overflow 1 1 + S

EA,RR Add register pair (RR) contents to EA and skip on
overflow

2 2 + S

RRb,EA Add EA to register pair (RRb) and skip on overflow 2 2 + S

Description: The source operand is added to the destination operand and the sum is stored in the destination.
The contents of the source are unaffected. If there is an overflow from the most significant bit of
the result, the skip signal is generated and a skip is executed, but the carry flag value is
unaffected.

If 'ADS A,#im' follows an 'ADC A,@HL' instruction in a program, ADC skips the ADS instruction
if an overflow occurs. If there is no overflow, the ADS instruction is executed normally. This skip
condition is valid only for 'ADC A,@HL' instructions, however. If an overflow occurs following an
ADS instruction, the next instruction is not skipped.

Operand Binary Code Operation Notation

A, #im 1 0 1 0 d3 d2 d1 d0 A ← A + im; skip on overflow

EA,#imm 1 1 0 0 1 0 0 1 EA ← EA + imm; skip on overflow

d7 d6 d5 d4 d3 d2 d1 d0

A,@HL 0 0 1 1 1 1 1 1 A ← A + (HL); skip on overflow

EA,RR 1 1 0 1 1 1 0 0 EA ← EA + RR; skip on overflow

1 0 0 1 1 r2 r1 0

RRb,EA 1 1 0 1 1 1 0 0 RRb ← RRb + EA; skip on overflow

1 0 0 1 0 r2 r1 0

Examples: 1. The extended accumulator contains the value 0C3H, register pair HL the value 0AAH, and
the carry flag = "0":

ADS EA,HL ; EA ← 0C3H + 0AAH = 6DH, C ← "0"
; ADS skips on overflow, but carry flag value is not affected.

JPS XXX ; This instruction is skipped since ADS had an overflow.
JPS YYY ; Jump to YYY.

KS57C2302/C2304/P2304 MICROCONTROLLER SAM47 INSTRUCTION SET

5-27

ADS — Add And Skip On Overflow

ADS (Continued)

Examples: 2. If the extended accumulator contains the value 0C3H, register pair HL the value 12H, and
the carry flag = "0":

ADS EA,HL ; EA ← 0C3H + 12H = 0D5H, C ← "0"
JPS XXX ; Jump to XXX; no skip after ADS.

3. If 'ADC A,@HL' is followed by an 'ADS A,#im', the ADC skips on overflow to the instruction
immediately after the ADS. An 'ADS A,#im' instruction immediately after the 'ADC A,@HL'
does not skip even if overflow occurs. This function is useful for decimal adjustment
operations.

a. 8 + 9 decimal addition (the contents of the address specified by the HL register is 9H):

RCF ; C ← "0"
LD A,#8H ; A ← 8H
ADS A,#6H ; A ← 8H + 6H = 0EH
ADC A,@HL ; A ← 7H, C ← "1"
ADS A,#0AH ; Skip this instruction because C = "1" after ADC result.
JPS XXX

b. 3 + 4 decimal addition (the contents of the address specified by the HL register is 4H):

RCF ; C ← "0"
LD A,#3H ; A ← 3H
ADS A,#6H ; A ← 3H + 6H = 9H
ADC A,@HL ; A ← 9H + 4H + C(0) = 0DH
ADS A,#0AH ; No skip. A ← 0DH + 0AH = 7H

; (The skip function for 'ADS A,#im' is inhibited after an
; 'ADC A,@HL' instruction even if an overflow occurs.)

JPS XXX

SAM47 INSTRUCTION SET KS57C2302/C2304/P2304 MICROCONTROLLER

5-28

AND — Logical And

AND dst,src

Operation: Operand Operation Summary Bytes Cycles

A,#im Logical-AND A immediate data to A 2 2

A,@HL Logical-AND A indirect data memory to A 1 1

EA,RR Logical-AND register pair (RR) to EA 2 2

RRb,EA Logical-AND EA to register pair (RRb) 2 2

Description: The source operand is logically ANDed with the destination operand. The result is stored in the
destination. The logical AND operation results in a "1" bit being stored whenever the
corresponding bits in the two operands are both "1"; otherwise a "0" bit is stored. The contents of
the source are unaffected.

Operand Binary Code Operation Notation

A,#im 1 1 0 1 1 1 0 1 A ← A AND im

0 0 0 1 d3 d2 d1 d0

A,@HL 0 0 1 1 1 0 0 1 A ← A AND (HL)

EA,RR 1 1 0 1 1 1 0 0 EA ← EA AND RR

0 0 0 1 1 r2 r1 0

RRb,EA 1 1 0 1 1 1 0 0 RRb ← RRb AND EA

0 0 0 1 0 r2 r1 0

Example: If the extended accumulator contains the value 0C3H (11000011B) and register pair HL the value
55H (01010101B), the instruction

AND EA,HL

leaves the value 41H (01000001B) in the extended accumulator EA .

KS57C2302/C2304/P2304 MICROCONTROLLER SAM47 INSTRUCTION SET

5-29

BAND — Bit Logical And

BAND C,src.b

Operation: Operand Operation Summary Bytes Cycles

C,mema.b Logical-AND carry flag with memory bit 2 2

C,memb.@L 2 2

C,@H+DA.b 2 2

Description: The specified bit of the source is logically ANDed with the carry flag bit value. If the Boolean
value of the source bit is a logic zero, the carry flag is cleared to "0"; otherwise, the current carry
flag setting is left unaltered. The bit value of the source operand is not affected.

Operand Binary Code Operation Notation

C,mema.b * 1 1 1 1 0 1 0 1 C ← C AND mema.b

C,memb.@L 1 1 1 1 0 1 0 1 C ← C AND [memb.7–2 + L.3–
2].
[L.1–0]

0 1 0 0 a5 a4 a3 a2

C,@H+DA.b 1 1 1 1 0 1 0 1 C ← C AND [H + DA.3–0].b

0 0 b1 b0 a3 a2 a1 a0

Second Byte Bit Addresses

* mema.b 1 0 b1 b0 a3 a2 a1 a0 FB0H–FBFH

1 1 b1 b0 a3 a2 a1 a0 FF0H–FFFH

Examples: 1. The following instructions set the carry flag if P1.0 (port 1.0) is equal to "1" (and assuming
the carry flag is already set to "1"):

SMB 15 ; C ← "1"
BAND C,P1.0 ; If P1.0 = "1", C ← "1"

; If P1.0 = "0", C ← "0"

2. Assume the P1 address is FF1H and the value for register L is 9H (1001B). The address
(memb.7–2) is 111100B; (L.3–2) is 10B. The resulting address is 11110010B or FF2H,
specifying P2. The bit value for the BAND instruction, (L.1–0) is 01B which specifies bit 1.
Therefore, P1.@L = P2.1:

LD L,#9H
BAND C,P1.@L ; P1.@L is specified as P2.1

; C AND P2.1

SAM47 INSTRUCTION SET KS57C2302/C2304/P2304 MICROCONTROLLER

5-30

BAND — Bit Logical And

BAND (Continued)

Examples: 3. Register H contains the value 2H and FLAG = 20H.3. The address of H is 0010B and FLAG
(3–0) is 0000B. The resulting address is 00100000B or 20H. The bit value for the BAND
instruction is 3. Therefore, @H+FLAG = 20H.3:

FLAG EQU 20H.3
LD H,#2H
BAND C,@H+FLAG ; C AND FLAG (20H.3)

KS57C2302/C2304/P2304 MICROCONTROLLER SAM47 INSTRUCTION SET

5-31

BITR — Bit Reset

BITR dst.b

Operation: Operand Operation Summary Bytes Cycles

DA.b Clear specified memory bit to logic zero 2 2

mema.b 2 2

memb.@L 2 2

@H+DA.b 2 2

Description: A BITR instruction clears to logic zero (resets) the specified bit within the destination operand. No
other bits in the destination are affected.

Operand Binary Code Operation Notation

DA.b 1 1 b1 b0 0 0 0 0 DA.b ← 0

a7 a6 a5 a4 a3 a2 a1 a0

mema.b * 1 1 1 1 1 1 1 0 mema.b ← 0

memb.@L 1 1 1 1 1 1 1 0 [memb.7–2 + L3–2].[L.1–0] ← 0

0 1 0 0 a5 a4 a3 a2

@H+DA.b 1 1 1 1 1 1 1 0 [H + DA.3–0].b ← 0

0 0 b1 b0 a3 a2 a1 a0

Second Byte Bit Addresses

* mema.b 1 0 b1 b0 a3 a2 a1 a0 FB0H–FBFH

1 1 b1 b0 a3 a2 a1 a0 FF0H–FFFH

Examples: 1. Bit location 30H.2 in the RAM has a current value of logic one. The following instruction
clears the third bit in RAM location 30H (bit 2) to logic zero:

BITR 30H.2 ; 30H.2 ← "0"

2. You can use BITR in the same way to manipulate a port address bit:

BITR P2.0 ; P2.0 ← "0"

SAM47 INSTRUCTION SET KS57C2302/C2304/P2304 MICROCONTROLLER

5-32

BITR — Bit Reset

BITR (Continued)

Examples: 3. Assuming that P2.2, P2.3, and P3.0–P3.3 are cleared to "0":

LD L,#0AH
BP2 BITR P1.@L ; First, P1.@0AH = P2.2

; (111100B) + 10B.10B = 0F2H.2
INCS L
JR BP2

4. If bank 0, location 0A0H.0 is cleared (and regardless of whether the EMB value is logic
zero),
BITR has the following effect:

FLAG EQU 0A0H.0
•
•
•
BITR EMB
•
•
•
LD H,#0AH
BITR @H+FLAG ; Bank 0 (AH + 0H).0 = 0A0H.0 ← "0”

NOTE: Since the BITR instruction is used for output functions, the pin names used in the examples above may change for
different devices in the SAM47 product family.

KS57C2302/C2304/P2304 MICROCONTROLLER SAM47 INSTRUCTION SET

5-33

BITS — Bit Set

BITS dst.b

Operation: Operand Operation Summary Bytes Cycles

DA.b Set specified memory bit 2 2

mema.b 2 2

memb.@L 2 2

@H+DA.b 2 2

Description: This instruction sets the specified bit within the destination without affecting any other bits in the
destination. BITS can manipulate any bit that is addressable using direct or indirect addressing
modes.

Operand Binary Code Operation Notation

DA.b 1 1 b1 b0 0 0 0 1 DA.b ← 1

a7 a6 a5 a4 a3 a2 a1 a0

mema.b * 1 1 1 1 1 1 1 1 mema.b ← 1

memb.@L 1 1 1 1 1 1 1 1 [memb.7–2 + L.3–2].b [L.1–0] ← 1

0 1 0 0 a5 a4 a3 a2

@H+DA.b 1 1 1 1 1 1 1 1 [H + DA.3–0].b ← 1

0 0 b1 b0 a3 a2 a1 a0

Second Byte Bit Addresses

* mema.b 1 0 b1 b0 a3 a2 a1 a0 FB0H–FBFH

1 1 b1 b0 a3 a2 a1 a0 FF0H–FFFH

Examples: 1. Assuming that bit location 30H.2 in the RAM has a current value of "0", the following
instruction sets the second bit of location 30H to "1".

BITS 30H.2 ; 30H.2 ← "1"

2. You can use BITS in the same way to manipulate a port address bit:

BITS P2.0d ; P2.0 ← "1"

SAM47 INSTRUCTION SET KS57C2302/C2304/P2304 MICROCONTROLLER

5-34

BITS — Bit Set

BITS (Continued)

Examples: 3. Given that P2.2, P2.3, and P3.0–P3.3 are set to "1":

LD L,#0AH
BP2 BITS P1.@L ; First, P1.@0AH = P2.2

; (111100B) + 10B.10B = 0F2H.2
INCS L
JR BP2

4. If bank 0, location 0A0H.0, is set to "1" and the EMB = "0", BITS has the following effect:

FLAG EQU 0A0H.0
•
•
•
BITR EMB
•
•
•
LD H,#0AH
BITS @H+FLAG ; Bank 0 (AH + 0H).0 = 0A0H.0 ← "1"

NOTE: Since the BITS instruction is used for output functions, pin names used in the examples above may change for
different devices in the SAM47 product family.

KS57C2302/C2304/P2304 MICROCONTROLLER SAM47 INSTRUCTION SET

5-35

BOR — Bit Logical OR

BOR C,src.b

Operation: Operand Operation Summary Bytes Cycles

C,mema.b Logical-OR carry with specified memory bit 2 2

C,memb.@L 2 2

C,@H+DA.b 2 2

Description: The specified bit of the source is logically ORed with the carry flag bit value. The value of the
source is unaffected.

Operand Binary Code Operation Notation

C,mema.b * 1 1 1 1 0 1 1 0 C ← C OR mema.b

C,memb.@L 1 1 1 1 0 1 1 0 C ← C OR [memb.7–2 + L.3–2].
[L.1–0]

0 1 0 0 a5 a4 a3 a2

C,@H+DA.b 1 1 1 1 0 1 1 0 C ← C OR [H + DA.3–0].b

0 0 b1 b0 a3 a2 a1 a0

Second Byte Bit Addresses

* mema.b 1 0 b1 b0 a3 a2 a1 a0 FB0H–FBFH

1 1 b1 b0 a3 a2 a1 a0 FF0H–FFFH

Examples: 1. The carry flag is logically ORed with the P1.0 value:

RCF ; C ← "0"
BOR C,P1.0 ; If P1.0 = "1", then C ← "1"; if P1.0 = "0", then C ← "0"

2. The P1 address is FF1H and register L contains the value 9H (1001B). The address (memb.7–
2) is 111100B and (L.3–2) = 10B. The resulting address is 11110010B or FF2H, specifying P2.
The bit value for the BOR instruction, (L.1–0) is 01B which specifies bit 1. Therefore, P1.@L =
P2.1:

LD L,#9H
BOR C,P1.@L ; P1.@L is specified as P2.1; C OR P2.1

SAM47 INSTRUCTION SET KS57C2302/C2304/P2304 MICROCONTROLLER

5-36

BOR — Bit Logical OR

BOR (Continued)

Examples: 3. Register H contains the value 2H and FLAG = 20H.3. The address of H is 0010B and
FLAG(3–0) is 0000B. The resulting address is 00100000B or 20H. The bit value for the BOR
instruction is 3. Therefore, @H+FLAG = 20H.3:

FLAG EQU 20H.3
LD H,#2H
BOR C,@H+FLAG ; C OR FLAG (20H.3)

KS57C2302/C2304/P2304 MICROCONTROLLER SAM47 INSTRUCTION SET

5-37

BTSF — Bit Test and Skip on False

BTSF dst.b

Operation: Operand Operation Summary Bytes Cycles

DA.b Test specified memory bit and skip if bit equals "0" 2 2 + S

mema.b 2 2 + S

memb.@L 2 2 + S

@H+DA.b 2 2 + S

Description: The specified bit within the destination operand is tested. If it is a "0", the BTSF instruction skips
the instruction which immediately follows it; otherwise the instruction following the BTSF is
executed. The destination bit value is not affected.

Operand Binary Code Operation Notation

DA.b 1 1 b1 b0 0 0 1 0 Skip if DA.b = 0

a7 a6 a5 a4 a3 a2 a1 a0

mema.b * 1 1 1 1 1 0 0 0 Skip if mema.b = 0

memb.@L 1 1 1 1 1 0 0 0 Skip if [memb.7–2 + L.3-2].
[L.1–0] = 0

0 1 0 0 a5 a4 a3 a2

@H + DA.b 1 1 1 1 1 0 0 0 Skip if [H + DA.3–0].b = 0

0 0 b1 b0 a3 a2 a1 a0

Second Byte Bit Addresses

* mema.b 1 0 b1 b0 a3 a2 a1 a0 FB0H–FBFH

1 1 b1 b0 a3 a2 a1 a0 FF0H–FFFH

Examples: 1. If RAM bit location 30H.2 is set to logic zero, the following instruction sequence will cause
the program to continue execution from the instruction identified as LABEL2:

BTSF 30H.2 ; If 30H.2 = "0", then skip
RET ; If 30H.2 = "1", return
JP LABEL2

2. You can use BTSF in the same way to manipulate a port pin address bit:

BTSF P2.0 ; If P2.0 = "0", then skip
RET ; If P2.0 = "1", then return
JP LABEL3

SAM47 INSTRUCTION SET KS57C2302/C2304/P2304 MICROCONTROLLER

5-38

BTSF — Bit Test and Skip on False

BTSF (Continued)

Examples: 3. P2.2, P2.3 and P3.0–P3.3 are tested:

LD L,#0AH
BP2 BTSF P1.@L ; First, P1.@0AH = P2.2

; (111100B) + 10B.10B = 0F2H.2
RET
INCS L
JR BP2

4. Bank 0, location 0A0H.0, is tested and (regardless of the current EMB value) BTSF has the
following effect:

FLAG EQU 0A0H.0
•
•
•
BITR EMB
•
•
•
LD H,#0AH
BTSF @H+FLAG ; If bank 0 (AH + 0H).0 = 0A0H.0 = "0", then skip
RET
•
•
•

KS57C2302/C2304/P2304 MICROCONTROLLER SAM47 INSTRUCTION SET

5-39

BTST — Bit Test and Skip on True

BTST dst.b

Operation: Operand Operation Summary Bytes Cycles

C Test carry bit and skip if set (= "1") 1 1 + S

DA.b Test specified bit and skip if memory bit is set 2 2 + S

mema.b 2 2 + S

memb.@L 2 2 + S

@H+DA.b 2 2 + S

Description: The specified bit within the destination operand is tested. If it is "1", the instruction that
immediately follows the BTST instruction is skipped; otherwise the instruction following the BTST
instruction is executed. The destination bit value is not affected.

Operand Binary Code Operation Notation

C 1 1 0 1 0 1 1 1 Skip if C = 1

DA.b 1 1 b1 b0 0 0 1 1 Skip if DA.b = 1

a7 a6 a5 a4 a3 a2 a1 a0

mema.b * 1 1 1 1 1 0 0 1 Skip if mema.b = 1

memb.@L 1 1 1 1 1 0 0 1 Skip if [memb.7–2 + L.3–2].
[L.1–0] = 1

0 1 0 0 a5 a4 a3 a2

@H+DA.b 1 1 1 1 1 0 0 1 Skip if [H + DA.3–0].b = 1

0 0 b1 b0 a3 a2 a1 a0

Second Byte Bit Addresses

* mema.b 1 0 b1 b0 a3 a2 a1 a0 FB0H–FBFH

1 1 b1 b0 a3 a2 a1 a0 FF0H–FFFH

Examples: 1. If RAM bit location 30H.2 is set to logic zero, the following instruction sequence will execute
the RET instruction:

BTST 30H.2 ; If 30H.2 = "1", then skip
RET ; If 30H.2 = "0", return
JP LABEL2

SAM47 INSTRUCTION SET KS57C2302/C2304/P2304 MICROCONTROLLER

5-40

BTST — Bit Test and Skip on True

BTST (Continued)

Examples: 2. You can use BTST in the same way to manipulate a port pin address bit:

BTST P2.0 ; If P2.0 = "1", then skip
RET ; If P2.0 = "0", then return
JP LABEL3

3. Assume that P2.2, P2.3 and P3.0–P3.3 are cleared to "0":

LD L,#0AH
BP2 BTST P1.@L ; First, P1.@0AH = P2.2

; (111100B) + 10B.10B = 0F2H.2
RET
INCS L
JR BP2

4. Bank 0, location 0A0H.0, is tested and (regardless of the current EMB value) BTST has the
following effect:

FLAG EQU 0A0H.0
•
•
•
BITR EMB

•
•
•
LD H,#0AH
BTST @H+FLAG ; If bank 0 (AH + 0H).0 = 0A0H.0 = "1", then skip
RET
•
•
•

KS57C2302/C2304/P2304 MICROCONTROLLER SAM47 INSTRUCTION SET

5-41

BTSTZ — Bit Test and Skip on True; Clear Bit

BTSTZ dst.b

Operation: Operand Operation Summary Bytes Cycles

mema.b Test specified bit; skip and clear if memory bit is set 2 2 + S

memb.@L 2 2 + S

@H+DA.b 2 2 + S

Description: The specified bit within the destination operand is tested. If it is a "1", the instruction immediately
following the BTSTZ instruction is skipped; otherwise the instruction following the BTSTZ is
executed. The destination bit value is cleared.

Operand Binary Code Operation Notation

mema.b * 1 1 1 1 1 1 0 1 Skip if mema.b = 1 and clear

memb.@L 1 1 1 1 1 1 0 1 Skip if [memb.7–2 + L.3–2].
[L.1–0] = 1 and clear

0 1 0 0 a5 a4 a3 a2

@H+DA.b 1 1 1 1 1 1 0 1 Skip if [H + DA.3–0].b =1 and clear

0 0 b1 b0 a3 a2 a1 a0

Second Byte Bit Addresses

* mema.b 1 0 b1 b0 a3 a2 a1 a0 FB0H–FBFH

1 1 b1 b0 a3 a2 a1 a0 FF0H–FFFH

Examples: 1. Port pin P2.0 is toggled by checking the P2.0 value (level):

BTSTZ P2.0 ; If P2.0 = "1", then P2.0 ← "0" and skip
BITS P2.0 ; If P2.0 = "0", then P2.0 ← "1"
JP LABEL3

2. Assume that port pins P2.2, P2.3 and P3.0–P3.3 are toggled:

LD L,#0AH
BP2 BTSTZ P1.@L ; First, P1.@0AH = P2.2

; (111100B) + 10B.10B = 0F2H.2
RET
INCS L
JR BP2

SAM47 INSTRUCTION SET KS57C2302/C2304/P2304 MICROCONTROLLER

5-42

BTSTZ — Bit Test and Skip on True; Clear Bit

BTSTZ (Continued)

Examples: 3. Bank 0, location 0A0H.0, is tested and EMB = "0":

FLAG EQU 0A0H.0
•
•
•
BITR EMB
•
•
•
LD H,#0AH
BTSTZ @H+FLAG ; If bank 0 (AH + 0H).0 = 0A0H.0 = "1", clear and skip
BITS @H+FLAG ; If 0A0H.0 = "0", then 0A0H.0 ← "1"

KS57C2302/C2304/P2304 MICROCONTROLLER SAM47 INSTRUCTION SET

5-43

BXOR — Bit Exclusive OR

BXOR C,src.b

Operation: Operand Operation Summary Bytes Cycles

C,mema.b Exclusive-OR carry with memory bit 2 2

C,memb.@L 2 2

C,@H+DA.b 2 2

Description: The specified bit of the source is logically XORed with the carry bit value. The resultant bit is
written to the carry flag. The source value is unaffected.

Operand Binary Code Operation Notation

C,mema.b * 1 1 1 1 0 1 1 1 C ← C XOR mema.b

C,memb.@L 1 1 1 1 0 1 1 1 C ← C XOR [memb.7–2 + L.3-2].
[L.1–0]

0 1 0 0 a5 a4 a3 a2

C,@H+DA.b 1 1 1 1 0 1 1 1 C ← C XOR [H + DA.3–0].b

0 0 b1 b0 a3 a2 a1 a0

Second Byte Bit Addresses

* mema.b 1 0 b1 b0 a3 a2 a1 a0 FB0H–FBFH

1 1 b1 b0 a3 a2 a1 a0 FF0H–FFFH

Examples: 1. The carry flag is logically XORed with the P1.0 value:

RCF ; C ← "0"
BXOR C,P1.0 ; If P1.0 = "1", then C ← "1"; if P1.0 = "0", then C ← "0"

2. The P1 address is FF1H and register L contains the value 9H (1001B). The address (memb.7–
2) is 111100B and (L.3–2) = 10B. The resulting address is 11110010B or FF2H, specifying P2.
The bit value for the BXOR instruction, (L.1–0) is 01B which specifies bit 1. Therefore, P1.@L
= P2.1:

LD L,#9H
BXOR C,P1.@L ; P1.@L is specified as P2.1; C XOR P2.1

SAM47 INSTRUCTION SET KS57C2302/C2304/P2304 MICROCONTROLLER

5-44

BXOR — Bit Exclusive OR

BXOR (Continued)

Examples: 3. Register H contains the value 2H and FLAG = 20H.3. The address of H is 0010B and
FLAG(3–0) is 0000B. The resulting address is 00100000B or 20H. The bit value for the BOR
instruction is 3. Therefore, @H+FLAG = 20H.3:

FLAG EQU 20H.3
LD H,#2H
BXOR C,@H+FLAG ; C XOR FLAG (20H.3)

KS57C2302/C2304/P2304 MICROCONTROLLER SAM47 INSTRUCTION SET

5-45

CALL — Call Procedure

CALL dst

Operation: Operand Operation Summary Bytes Cycles

ADR12 Call direct address(12 bits) 3 4

Description: CALL calls a subroutine located at the destination address. The instruction adds three to the
program counter to generate the return address and then pushes the result onto the stack,
decreasing the stack pointer by six. The EMB and ERB are also pushed to the stack. Program
execution continues with the instruction at this address. The subroutine may therefore begin
anywhere in the full 14-Kbyte program memory address space.

Operand Binary Code Operation Notation

ADR12 1 1 0 1 1 0 1 1 [(SP–1) (SP–2)] ← EMB, ERB
[(SP–3) (SP–4)] ← PC7–0

0 1 0 a12 a11 a10 a9 a8 [(SP–5) (SP–6)] ← PC11–8
SP ← SP - 6

a7 a6 a5 a4 a3 a2 a1 a0 PC11–0 ← ADR12

Example: The stack pointer value is 00H and the label 'PLAY' is assigned to program memory location
0E3FH. Executing the instruction

CALL PLAY

at location 0123H will generate the following values:

SP = 0FAH
0FFH = 0H
0FEH = EMB, ERB
0FDH = 2H
0FCH = 6H
0FBH = 0H
0FAH = 1H
PC = 0E3FH

Data is written to stack locations 0FFH–0FAH as follows:

0FAH PC11 – PC8

0FBH 0 0 0 0

0FCH PC3 – PC0

0FDH PC7 – PC4

0FEH 0 0 EMB ERB

0FFH 0 0 0 0

SAM47 INSTRUCTION SET KS57C2302/C2304/P2304 MICROCONTROLLER

5-46

CALLS — Call Procedure (Short)

CALLS dst

Operation: Operand Operation Summary Bytes Cycles

ADR11 Call direct address within 2 K (11 bits) 2 3

Description: The CALLS instruction unconditionally calls a subroutine located at the indicated address. The
instruction increments the PC twice to obtain the address of the following instruction. Then, it
pushes the result onto the stack, decreasing the stack pointer six times. The higher bits of the
PC, with the exception of the lower 11 bits, are cleared. The subroutine call must therefore be
located within the 2-Kbyte block (0000H–07FFH) of program memory.

Operand Binary Code Operation Notation

ADR11 1 1 1 0 1 a10 a9 a8 [(SP–1) (SP–2)] ← EMB, ERB
[(SP–3) (SP–4)] ← PC7–0
[(SP–5) (SP–6)] ← PC11–8

a7 a6 a5 a4 a3 a2 a1 a0 SP ← SP - 6
PC11 ← 0
PC10–0 ← ADR11

Example: The stack pointer value is 00H and the label 'PLAY' is assigned to program memory location
0345H. Executing the instruction

CALLS PLAY

at location 0123H will generate the following values:

SP = 0FAH
0FFH = 0H
0FEH = EMB, ERB
0FDH = 2H
0FCH = 5H
0FBH = 0H
0FAH = 1H
PC = 0345H

Data is written to stack locations 0FFH–0FAH as follows:

0FAH PC11 – PC8

0FBH 0 0 0 0

0FCH PC3 – PC0

0FDH PC7 – PC4

0FEH 0 0 EMB ERB

0FFH 0 0 0 0

KS57C2302/C2304/P2304 MICROCONTROLLER SAM47 INSTRUCTION SET

5-47

CCF — Complement Carry Flag

CCF

Operation: Operand Operation Summary Bytes Cycles

– Complement carry flag 1 1

Description: The carry flag is complemented; if C = "1" it is changed to C = "0" and vice-versa.

Operand Binary Code Operation Notation

– 1 1 0 1 0 1 1 0 C ← C

Example: If the carry flag is logic zero, the instruction

CCF

changes the value to logic one.

SAM47 INSTRUCTION SET KS57C2302/C2304/P2304 MICROCONTROLLER

5-48

COM — Complement Accumulator

COM A

Operation: Operand Operation Summary Bytes Cycles

A Complement accumulator (A) 2 2

Description: The accumulator value is complemented; if the bit value of A is "1", it is changed to "0" and vice
versa.

Operand Binary Code Operation Notation

A 1 1 0 1 1 1 0 1 A ← A

0 0 1 1 1 1 1 1

Example: If the accumulator contains the value 4H (0100B), the instruction

COM A

leaves the value 0BH (1011B) in the accumulator.

KS57C2302/C2304/P2304 MICROCONTROLLER SAM47 INSTRUCTION SET

5-49

CPSE — Compare and Skip if Equal

CPSE dst,src

Operation: Operand Operation Summary Bytes Cycles

R,#im Compare and skip if register equals #im 2 2 + S

@HL,#im Compare and skip if indirect data memory equals #im 2 2 + S

A,R Compare and skip if A equals R 2 2 + S

A,@HL Compare and skip if A equals indirect data memory 1 1 + S

EA,@HL Compare and skip if EA equals indirect data memory 2 2 + S

EA,RR Compare and skip if EA equals RR 2 2 + S

Description: CPSE compares the source operand (subtracts it from) the destination operand, and skips the
next instruction if the values are equal. Neither operand is affected by the comparison.

Operand Binary Code Operation Notation

R,#im 1 1 0 1 1 0 0 1 Skip if R = im

d3 d2 d1 d0 0 r2 r1 r0

@HL,#im 1 1 0 1 1 1 0 1 Skip if (HL) = im

0 1 1 1 d3 d2 d1 d0

A,R 1 1 0 1 1 1 0 1 Skip if A = R

0 1 1 0 1 r2 r1 r0

A,@HL 0 0 1 1 1 0 0 0 Skip if A = (HL)

EA,@HL 1 1 0 1 1 1 0 0 Skip if A = (HL), E = (HL+1)

0 0 0 0 1 0 0 1

EA,RR 1 1 0 1 1 1 0 0 Skip if EA = RR

1 1 1 0 1 r2 r1 0

Example: The extended accumulator contains the value 34H and register pair HL contains 56H. The
second instruction (RET) in the instruction sequence

CPSE EA,HL
RET

is not skipped. That is, the subroutine returns since the result of the comparison is 'not equal.'

SAM47 INSTRUCTION SET KS57C2302/C2304/P2304 MICROCONTROLLER

5-50

DECS — Decrement and Skip on Borrow

DECS dst

Operation: Operand Operation Summary Bytes Cycles

R Decrement register (R); skip on borrow 1 1 + S

RR Decrement register pair (RR); skip on borrow 2 2 + S

Description: The destination is decremented by one. An original value of 00H will underflow to 0FFH. If a
borrow occurs, a skip is executed. The carry flag value is unaffected.

Operand Binary Code Operation Notation

R 0 1 0 0 1 r2 r1 r0 R ← R–1; skip on borrow

RR 1 1 0 1 1 1 0 0 RR ← RR–1; skip on borrow

1 1 0 1 1 r2 r1 0

Examples: 1. Register pair HL contains the value 7FH (01111111B). The following instruction leaves the
value 7EH in register pair HL:

DECS HL

2. Register A contains the value 0H. The following instruction sequence leaves the value 0FFH
in register A. Since a "borrow" occurs, the 'CALL PLAY1' instruction is skipped and the 'CALL
PLAY2' instruction is executed:

DECS A ; "Borrow" occurs
CALL PLAY1 ; Skipped
CALL PLAY2 ; Executed

KS57C2302/C2304/P2304 MICROCONTROLLER SAM47 INSTRUCTION SET

5-51

DI — Disable Interrupts

DI

Operation: Operand Operation Summary Bytes Cycles

– Disable all interrupts 2 2

Description: Bit 3 of the interrupt priority register IPR, IME, is cleared to logic zero, disabling all interrupts.
Interrupts can still set their respective interrupt status latches, but the CPU will not directly
service them.

Operand Binary Code Operation Notation

– 1 1 1 1 1 1 1 0 IME ← 0

1 0 1 1 0 0 1 0

Example: If the IME bit (bit 3 of the IPR) is logic one (e.g., all instructions are enabled), the instruction

DI

sets the IME bit to logic zero, disabling all interrupts.

SAM47 INSTRUCTION SET KS57C2302/C2304/P2304 MICROCONTROLLER

5-52

EI — Enable Interrupts

EI

Operation: Operand Operation Summary Bytes Cycles

– Enable all interrupts 2 2

Description: Bit 3 of the interrupt priority register IPR (IME) is set to logic one. This allows all interrupts to be
serviced when they occur, assuming they are enabled. If an interrupt's status latch was
previously enabled by an interrupt, this interrupt can also be serviced.

Operand Binary Code Operation Notation

– 1 1 1 1 1 1 1 1 IME ← 1

1 0 1 1 0 0 1 0

Example: If the IME bit (bit 3 of the IPR) is logic zero (e.g., all instructions are disabled), the instruction

EI

sets the IME bit to logic one, enabling all interrupts.

KS57C2302/C2304/P2304 MICROCONTROLLER SAM47 INSTRUCTION SET

5-53

IDLE — Idle Operation

IDLE

Operation: Operand Operation Summary Bytes Cycles

– Engage CPU idle mode 2 2

Description: IDLE causes the CPU clock to stop while the system clock continues oscillating by setting bit 2 of
the power control register (PCON). After an IDLE instruction has been executed, peripheral
hardware remains operative.

In application programs, an IDLE instruction must be immediately followed by at least three NOP
instructions. This ensures an adequate time interval for the clock to stabilize before the next
instruction is executed. If three NOP instructions are not used after IDLE instruction, leakage
current could be flown because of the floating state in the internal bus.

Operand Binary Code Operation Notation

– 1 1 1 1 1 1 1 1 PCON.2 ← 1

1 0 1 0 0 0 1 1

Example: The instruction sequence

IDLE
NOP
NOP
NOP

sets bit 2 of the PCON register to logic one, stopping the CPU clock. The three NOP instructions
provide the necessary timing delay for clock stabilization before the next instruction in the
program sequence is executed.

SAM47 INSTRUCTION SET KS57C2302/C2304/P2304 MICROCONTROLLER

5-54

INCS — Increment and Skip on Carry

INCS dst

Operation: Operand Operation Summary Bytes Cycles

R Increment register (R); skip on carry 1 1 + S

DA Increment direct data memory; skip on carry 2 2 + S

@HL Increment indirect data memory; skip on carry 2 2 + S

RRb Increment register pair (RRb); skip on carry 1 1 + S

Description: The instruction INCS increments the value of the destination operand by one. An original value
of 0FH will, for example, overflow to 00H. If a carry occurs, the next instruction is skipped. The
carry flag value is unaffected.

Operand Binary Code Operation Notation

R 0 1 0 1 1 r2 r1 r0 R ← R + 1; skip on carry

DA 1 1 0 0 1 0 1 0 DA ← DA + 1; skip on carry

a7 a6 a5 a4 a3 a2 a1 a0

@HL 1 1 0 1 1 1 0 1 (HL) ← (HL) + 1; skip on carry

0 1 1 0 0 0 1 0

RRb 1 0 0 0 0 r2 r1 0 RRb ← RRb + 1; skip on carry

Example: Register pair HL contains the value 7EH (01111110B). RAM location 7EH contains 0FH. The
instruction sequence

INCS @HL ; 7EH ← "0"
INCS HL ; Skip
INCS @HL ; 7EH ← "1"

leaves the register pair HL with the value 7EH and RAM location 7EH with the value 1H. Since a
carry occurred, the second instruction is skipped. The carry flag value remains unchanged.

KS57C2302/C2304/P2304 MICROCONTROLLER SAM47 INSTRUCTION SET

5-55

IRET — Return From Interrupt

IRET

Operation: Operand Operation Summary Bytes Cycles

– Return from interrupt 1 3

Description: IRET is used at the end of an interrupt service routine. It pops the PC values successively from
the stack and restores them to the program counter. The stack pointer is incremented by six and
the PSW, enable memory bank (EMB) bit, and enable register bank (ERB) bit are also
automatically restored to their pre-interrupt values. Program execution continues from the
resulting address, which is generally the instruction immediately after the point at which the
interrupt request was detected. If a lower-level or same-level interrupt was pending when the
IRET was executed, IRET will be executed before the pending interrupt is processed.

Operand Binary Code Operation Notation

– 1 1 0 1 0 1 0 1 PC11–8 ← (SP + 1) (SP)
PC7–0 ← SP + 2) (SP + 3)
PSW ← (SP + 4) (SP + 5)
SP ← SP + 6

Example: The stack pointer contains the value 0FAH. An interrupt is detected in the instruction at location
0122H. RAM locations 0FDH, 0FCH, and 0FAH contain the values 2H, 3H, and 1H, respectively.
The instruction

IRET

leaves the stack pointer with the value 00H and the program returns to continue execution at
location 123H.

During a return from interrupt, data is popped from the stack to the program counter. The data in
stack locations 0FFH–0FAH is organized as follows:

0FAH PC11 – PC8

0FBH 0 0 0 0

0FCH PC3 – PC0

0FDH PC7 – PC4

0FEH IS1 IS0 EMB ERB

0FFH C SC2 SC1 SC0

SAM47 INSTRUCTION SET KS57C2302/C2304/P2304 MICROCONTROLLER

5-56

JP — Jump

JP dst

Operation: Operand Operation Summary Bytes Cycles

ADR12 Jump to direct address (12 bits) 3 3

Description: JP causes an unconditional branch to the indicated address by replacing the contents of the
program counter with the address specified in the destination operand. The destination can be
anywhere in the 4-Kbyte program memory address space.

Operand Binary Code Operation Notation

ADR12 1 1 0 1 1 0 1 1 PC11–0 ← ADR12

0 0 0 0 a11 a10 a9 a8

a7 a6 a5 a4 a3 a2 a1 a0

Example: The label 'SYSCON' is assigned to the instruction at program location 07FFH. The instruction

JP SYSCON

at location 0123H will load the program counter with the value 07FFH.

KS57C2302/C2304/P2304 MICROCONTROLLER SAM47 INSTRUCTION SET

5-57

JPS — Jump (Short)

JPS dst

Operation: Operand Operation Summary Bytes Cycles

ADR12 Jump direct in page (12 bits) 2 2

Description: JPS causes an unconditional branch to the indicated address with the 4-Kbyte program memory
address space. Bits 0–11 of the program counter are replaced with the directly specified address.
The destination address for this jump is specified to the assembler by a label or by an actual
address in program memory.

Operand Binary Code Operation Notation

ADR12 1 0 0 1 a11 a10 a9 a8 PC11–0 ←ADR12

a7 a6 a5 a4 a3 a2 a1 a0

Example: The label 'SUB' is assigned to the instruction at program memory location 00FFH. The instruction

JPS SUB

at location 0EABH will load the program counter with the value 00FFH.

SAM47 INSTRUCTION SET KS57C2302/C2304/P2304 MICROCONTROLLER

5-58

JR — Jump Relative (Very Short)

JR dst

Operation: Operand Operation Summary Bytes Cycles

#im Branch to relative immediate address 1 2

@WX Branch relative to contents of WX register 2 3

@EA Branch relative to contents of EA 2 3

Description: JR causes the relative address to be added to the program counter and passes control to the
instruction whose address is now in the PC. The range of the relative address is current PC – 15
to current PC + 16. The destination address for this jump is specified to the assembler by a label,
an actual address, or by immediate data using a plus sign (+) or a minus sign (–).

For immediate addressing, the (+) range is from 2 to 16 and the (–) range is from –1 to –15. If a
0, 1, or any other number that is outside these ranges are used, the assembler interprets it as an
error.

For JR @WX and JR @EA branch relative instructions, the valid range for the relative address is
0H–0FFH. The destination address for these jumps can be specified to the assembler by a label
that lies anywhere within the current 256-byte block.

Normally, the 'JR @WX' and 'JR @EA' instructions jump to the address in the page in which the
instruction is located. However, if the first byte of the instruction code is located at address
0xFEH or 0xFFH, the instruction will jump to the next page.

Operand Binary Code Operation Notation

#im * PC11–0 ← ADR (PC–15 to
PC+16)

@WX 1 1 0 1 1 1 0 1 PC11–0 ← PC11–8 + (WX)

0 1 1 0 0 1 0 0

@EA 1 1 0 1 1 1 0 1 PC11–0 ← PC11–8 + (EA)

0 1 1 0 0 0 0 0

First Byte Condition

* JR #im 0 0 0 1 a3 a2 a1 a0 PC ← PC+2 to PC+16

0 0 0 0 a3 a2 a1 a0 PC ← PC–1 to PC–15

KS57C2302/C2304/P2304 MICROCONTROLLER SAM47 INSTRUCTION SET

5-59

JR — Jump Relative (Very Short)

JR (Continued)

Examples: 1. A short form for a relative jump to label 'KK' is the instruction

JR KK

where 'KK' must be within the allowed range of current PC–15 to current PC+16. The JR
instruction has in this case the effect of an unconditional JP instruction.

2. In the following instruction sequence, if the instruction 'LD WX, #02H' were to be executed in
place of 'LD WX,#00H', the program would jump to 0502H and 'JPS BBB' would be executed.
If 'LD EA,#04H' were to be executed, the jump would be to 0504H and 'JPS CCC' would be
executed.

ORG 0500H

JPS AAA
JPS BBB
JPS CCC
JPS DDD

LD WX,#00H ; WX ← 00H
LD EA,WX
ADS WX,EA ; WX ← (WX) + (WX)
JR @WX ; Current PC11–8 (05H) + WX (00H) = 0500H

; Jump to address 0500H and execute JPS AAA

3. Here is another example:

ORG 0600H

LD A,#0H
LD A,#1H
LD A,#2H
LD A,#3H
LD 30H,A ; Address 30H ← A
JPS YYY

XXX LD EA,#00H ; EA ← 00H
JR @EA ; Jump to address 0600H

; Address 30H ← 0H

If 'LD EA,#01H' were to be executed in place of 'LD EA,#00H', the program would jump to
0601H and address 30H would contain the value 1H. If 'LD EA,#02H' were to be executed, the
jump would be to 0602H and address 30H would contain the value 2H.

SAM47 INSTRUCTION SET KS57C2302/C2304/P2304 MICROCONTROLLER

5-60

LD — Load

LD dst,src

Operation: Operand Operation Summary Bytes Cycles

A,#im Load 4-bit immediate data to A 1 1

A,@RRa Load indirect data memory contents to A 1 1

A,DA Load direct data memory contents to A 2 2

A,Ra Load register contents to A 2 2

Ra,#im Load 4-bit immediate data to register 2 2

RR,#imm Load 8-bit immediate data to register 2 2

DA,A Load contents of A to direct data memory 2 2

Ra,A Load contents of A to register 2 2

EA,@HL Load indirect data memory contents to EA 2 2

EA,DA Load direct data memory contents to EA 2 2

EA,RRb Load register contents to EA 2 2

@HL,A Load contents of A to indirect data memory 1 1

DA,EA Load contents of EA to data memory 2 2

RRb,EA Load contents of EA to register 2 2

@HL,EA Load contents of EA to indirect data memory 2 2

Description: The contents of the source are loaded into the destination. The source's contents are unaffected.

If an instruction such as 'LD A,#im' (LD EA,#imm) or 'LD HL,#imm' is written more than two
times in succession, only the first LD will be executed; the other similar instructions that
immediately follow the first LD will be treated like a NOP. This is called the 'redundancy effect'
(see examples below).

Operand Binary Code Operation Notation

A,#im 1 0 1 1 d3 d2 d1 d0 A ← im

A,@RRa 1 0 0 0 1 i2 i1 i0 A ← (RRa)

A,DA 1 0 0 0 1 1 0 0 A ← DA

a7 a6 a5 a4 a3 a2 a1 a0

A,Ra 1 1 0 1 1 1 0 1 A ← Ra

0 0 0 0 1 r2 r1 r0

Ra,#im 1 1 0 1 1 0 0 1 Ra ← im

d3 d2 d1 d0 1 r2 r1 r0

KS57C2302/C2304/P2304 MICROCONTROLLER SAM47 INSTRUCTION SET

5-61

LD — Load

LD (Continued)

Description: Operand Binary Code Operation Notation

RR,#imm 1 0 0 0 0 r2 r1 1 RR ← imm

d7 d6 d5 d4 d3 d2 d1 d0

DA,A 1 0 0 0 1 0 0 1 DA ← A

a7 a6 a5 a4 a3 a2 a1 a0

Ra,A 1 1 0 1 1 1 0 1 Ra ← A

0 0 0 0 0 r2 r1 r0

EA,@HL 1 1 0 1 1 1 0 0 A ← (HL), E ← (HL + 1)

0 0 0 0 1 0 0 0

EA,DA 1 1 0 0 1 1 1 0 A ← DA, E ← DA + 1

a7 a6 a5 a4 a3 a2 a1 a0

EA,RRb 1 1 0 1 1 1 0 0 EA ← RRb

1 1 1 1 1 r2 r1 0

@HL,A 1 1 0 0 0 1 0 0 (HL) ← A

DA,EA 1 1 0 0 1 1 0 1 DA ← A, DA + 1 ← E

a7 a6 a5 a4 a3 a2 a1 a0

RRb,EA 1 1 0 1 1 1 0 0 RRb ← EA

1 1 1 1 0 r2 r1 0

@HL,EA 1 1 0 1 1 1 0 0 (HL) ← A, (HL + 1) ← E

0 0 0 0 0 0 0 0

Examples: 1. RAM location 30H contains the value 4H. The RAM location values are 40H, 41H, and 0AH,
3H respectively. The following instruction sequence leaves the value 40H in point pair HL,
0AH in the accumulator and in RAM location 40H, and 3H in register E.

LD HL,#30H ; HL ← 30H
LD A,@HL ; A ← 4H
LD HL,#40H ; HL ← 40H
LD EA,@HL ; A ← 0AH, E ← 3H
LD @HL,A ; RAM (40H) ← 0AH

SAM47 INSTRUCTION SET KS57C2302/C2304/P2304 MICROCONTROLLER

5-62

LD — Load

LD (Continued)

Examples: 2. If an instruction such as LD A,#im (LD EA,#imm) or LD HL,#imm is written more than two
times in succession, only the first LD is executed; the next instructions are treated as NOPs.
Here are two examples of this 'redundancy effect':

LD A,#1H ; A ← 1H
LD EA,#2H ; NOP
LD A,#3H ; NOP
LD 23H,A ; (23H) ← 1H

LD HL,#10H ; HL ← 10H
LD HL,#20H ; NOP
LD A,#3H ; A ← 3H
LD EA,#35 ; NOP
LD @HL,A ; (10H) ← 3H

The following table contains descriptions of special characteristics of the LD instruction when
used in different addressing modes:

Instruction Operation Description and Guidelines

LD A,#im Since the 'redundancy effect' occurs with instructions like LD EA,#imm, if this
instruction is used consecutively, the second and additional instructions of the
same type will be treated like NOPs.

LD A,@RRa Load the data memory contents pointed to by 8-bit RRa register pairs (HL, WX,
WL) to the A register.

LD A,DA Load direct data memory contents to the A register.

LD A,Ra Load 4-bit register Ra (E, L, H, X, W, Z, Y) to the A register.

LD Ra,#im Load 4-bit immediate data into the Ra register (E, L, H, X, W, Y, Z).

LD RR,#imm Load 8-bit immediate data into the Ra register (EA, HL, WX, YZ). There is a
redundancy effect if the operation addresses the HL or EA registers.

LD DA,A Load contents of register A to direct data memory address.

LD Ra,A Load contents of register A to 4-bit Ra register (E, L, H, X, W, Z, Y).

KS57C2302/C2304/P2304 MICROCONTROLLER SAM47 INSTRUCTION SET

5-63

LD — Load

LD (Concluded)

Examples: Instruction Operation Description and Guidelines

LD EA,@HL Load data memory contents pointed to by 8-bit register HL to the A register,
and the contents of HL+1 to the E register. The contents of register L must be
an even number. If the number is odd, the LSB of register L is recognized as a
logic zero (an even number), and it is not replaced with the true value. For
example, 'LD HL,#36H' loads immediate 36H to HL and the next instruction
'LD EA,@HL' loads the contents of 36H to register A and the contents of 37H
to register E.

LD EA,DA Load direct data memory contents of DA to the A register, and the next direct
data memory contents of DA + 1 to the E register. The DA value must be an
even number. If it is an odd number, the LSB of DA is recognized as a logic
zero (an even number), and it is not replaced with the true value. For example,
'LD EA,37H' loads the contents of 36H to the A register and the contents of
37H to the E register.

LD EA,RRb Load 8-bit RRb register (HL, WX, YZ) to the EA register. H, W, and Y register
values are loaded into the E register, and the L, X, and Z values into the A
register.

LD @HL,A Load A register contents to data memory location pointed to by the 8-bit HL
register value.

LD DA,EA Load the A register contents to direct data memory and the E register contents
to the next direct data memory location. The DA value must be an even
number. If it is an odd number, the LSB of the DA value is recognized as logic
zero (an even number), and is not replaced with the true value.

LD RRb,EA Load contents of EA to the 8-bit RRb register (HL, WX, YZ). The E register is
loaded into the H, W, and Y register and the A register into the L, X, and Z
register.

LD @HL,EA Load the A register to data memory location pointed to by the 8-bit HL register,
and the E register contents to the next location, HL + 1. The contents of the L
register must be an even number. If the number is odd, the LSB of the L
register is recognized as logic zero (an even number), and is not replaced with
the true value. For example, 'LD HL,#36H' loads immediate 36H to register
HL; the instruction 'LD @HL,EA' loads the contents of A into address 36H and
the contents of E into address 37H.

SAM47 INSTRUCTION SET KS57C2302/C2304/P2304 MICROCONTROLLER

5-64

LDB — Load Bit

LDB dst,src.b
LDB dst.b,src

Operation: Operand Operation Summary Bytes Cycles

mema.b,C Load carry bit to a specified memory bit 2 2

memb.@L,C Load carry bit to a specified indirect memory bit 2 2

@H+DA.b,C 2 2

C,mema.b Load memory bit to a specified carry bit 2 2

C,memb.@L Load indirect memory bit to a specified carry bit 2 2

C,@H+DA.b 2 2

Description: The Boolean variable indicated by the first or second operand is copied into the location specified
by the second or first operand. One of the operands must be the carry flag; the other may be any
directly or indirectly addressable bit. The source is unaffected.

Operand Binary Code Operation Notation

mema.b,C * 1 1 1 1 1 1 0 0 mema.b ← C

memb.@L,C 1 1 1 1 1 1 0 0 memb.7–2 + [L.3–2]. [L.1–0] ← C

0 1 0 0 a5 a4 a3 a2

@H+DA.b,C 1 1 1 1 1 1 0 0 H + [DA.3–0].b ← (C)

0 b2 b1 b0 a3 a2 a1 a0

C,mema.b* 1 1 1 1 0 1 0 0 C ← mema.b

C,memb.@L 1 1 1 1 0 1 0 0 C ← memb.7–2 + [L.3–2] . [L.1–0]

0 1 0 0 a5 a4 a3 a2

C,@H+DA.b 1 1 1 1 0 1 0 0 C ← [H + DA.3–0].b

0 b2 b1 b0 a3 a2 a1 a0

Second Byte Bit Addresses

* mema.b 1 0 b1 b0 a3 a2 a1 a0 FB0H–FBFH

1 1 b1 b0 a3 a2 a1 a0 FF1H–FF9H

KS57C2302/C2304/P2304 MICROCONTROLLER SAM47 INSTRUCTION SET

5-65

LDB — Load Bit

LDB (Continued)

Examples: 1. The carry flag is set and the data value at input pin P1.0 is logic zero. The following instruction
clears the carry flag to logic zero.

LDB C,P1.0

2. The P1 address is FF1H and the L register contains the value 9H (1001B). The address
(memb.7–2) is 111100B and (L.3–2) is 10B. The resulting address is 11110010B or FF2H and
P2 is addressed. The bit value (L.1–0) is specified as 01B (bit 1).

LD L,#9H
LDB C,P1.@L ; P1.@L specifies P2.1 and C ← P2.1

3. The H register contains the value 2H and FLAG = 20H.3. The address for H is 0010B and for
FLAG(3–0) the address is 0000B. The resulting address is 00100000B or 20H. The bit value
is 3. Therefore, @H+FLAG = 20H.3.

FLAG EQU 20H.3
LD H,#2H
LDB C,@H+FLAG ; C ← FLAG (20H.3)

4. The following instruction sequence sets the carry flag and the loads the "1" data value to the
output pin P2.0, setting it to output mode:

SCF ; C ← "1"
LDB P2.0,C ; P2.0 ← "1"

5. The P1 address is FF1H and L = 9H (1001B). The address (memb.7–2) is 111100B and
(L.3–2) is 10B. The resulting address, 11110010B specifies P2. The bit value (L.1–0) is
specified as 01B (bit 1). Therefore, P1.@L = P2.1.

SCF ; C ← "1"
LD L,#9H
LDB P1.@L,C ; P1.@L specifies P2.1

; P2.1 ← "1"

6. In this example, H = 2H and FLAG = 20H.3 and the address 20H is specified. Since the bit
value is 3, @H+FLAG = 20H.3:

FLAG EQU 20H.3
RCF ; C ← "0"
LD H,#2H
LDB @H+FLAG,C ; FLAG(20H.3) ← "0"

NOTE: Port pin names used in examples 4 and 5 may vary with different SAM47 devices.

SAM47 INSTRUCTION SET KS57C2302/C2304/P2304 MICROCONTROLLER

5-66

LDC — Load Code Byte

LDC dst,src

Operation: Operand Operation Summary Bytes Cycles

EA,@WX Load code byte from WX to EA 1 3

EA,@EA Load code byte from EA to EA 1 3

Description: This instruction is used to load a byte from program memory into an extended accumulator. The
address of the byte fetched is the five highest bit values in the program counter and the contents
of an 8-bit working register (either WX or EA). The contents of the source are unaffected.

Operand Binary Code Operation Notation

EA,@WX 1 1 0 0 1 1 0 0 EA ← [PC11–8 + (WX)]

EA,@EA 1 1 0 0 1 0 0 0 EA ← [PC11–8 + (EA)]

Examples: 1. The following instructions will load one of four values defined by the define byte (DB) directive
to the extended accumulator:

LD EA,#00H
CALL DISPLAY
JPS MAIN

ORG 0500H

DB 66H
DB 77H
DB 88H
DB 99H
•
•
•

DISPLAY LDC EA,@EA ; EA ← address 0500H = 66H
RET

If the instruction 'LD EA,#01H' is executed in place of 'LD EA,#00H', The content of 0501H
(77H) is loaded to the EA register. If 'LD EA,#02H' is executed, the content of address 0502H
(88H) is loaded to EA.

KS57C2302/C2304/P2304 MICROCONTROLLER SAM47 INSTRUCTION SET

5-67

LDC — Load Code Byte

LDC (Continued)

Examples: 2. The following instructions will load one of four values defined by the define byte (DB) directive
to the extended accumulator:

ORG 0500

DB 66H
DB 77H
DB 88H
DB 99H
•
•
•

DISPLAY LD WX,#00H
LDC EA,@WX ; EA ← address 0500H = 66H
RET

If the instruction 'LD WX,#01H' is executed in place of 'LD WX,#00H', then
EA ← address 0501H = 77H.

If the instruction 'LD WX,#02H' is executed in place of 'LD WX,#00H', then
EA ← address 0502H = 88H.

3. Normally, the LDC EA, @EA and the LDC EA, @WX instructions reference the table data
on the page on which the instruction is located. If, however, the instruction is located at
address xxFFH, it will reference table data on the next page. In this example, the upper 4 bits
of the address at location 0200H is loaded into register E and the lower 4 bits into register A:

ORG 01FDH

01FDH LD WX,#00H
01FFH LDC EA,@WX ; E ← upper 4 bits of 0200H address

; A ← lower 4 bits of 0200H address

4. Here is another example of page referencing with the LDC instruction:

ORG 0100

DB 67H
SMB 0
LD HL,#30H ; Even number
LD WX,#00H
LDC EA,@WX ; E ← upper 4 bits of 0100H address

; A ← lower 4 bits of 0100H address
LD @HL,EA ; RAM (30H) ← 7, RAM (31H) ← 6

SAM47 INSTRUCTION SET KS57C2302/C2304/P2304 MICROCONTROLLER

5-68

LDD — Load Data Memory and Decrement

LDD dst

Operation: Operand Operation Summary Bytes Cycles

A,@HL Load indirect data memory contents to A; decrement
register L contents and skip on borrow

1 2 + S

Description: The contents of a data memory location are loaded into the accumulator, and the contents of the
register L are decreased by one. If a "borrow" occurs (e.g., if the resulting value in register L is
0FH), the next instruction is skipped. The contents of data memory and the carry flag value are
not affected.

Operand Binary Code Operation Notation

A,@HL 1 0 0 0 1 0 1 1 A ← (HL), then L ← L–1;
skip if L = 0FH

Example: In this example, assume that register pair HL contains 20H and internal RAM location 20H
contains the value 0FH:

LD HL,#20H
LDD A,@HL ; A ← (HL) and L ← L–1
JPS XXX ; Skip
JPS YYY ; H ← 2H and L ← 0FH

The instruction 'JPS XXX' is skipped since a "borrow" occurred after the 'LDD A,@HL' and
instruction 'JPS YYY' is executed.

KS57C2302/C2304/P2304 MICROCONTROLLER SAM47 INSTRUCTION SET

5-69

LDI — Load Data Memory and Increment

LDI dst,src

Operation: Operand Operation Summary Bytes Cycles

A,@HL Load indirect data memory to A; increment register L
contents and skip on overflow

1 2 + S

Description: The contents of a data memory location are loaded into the accumulator, and the contents of the
register L are incremented by one. If an overflow occurs (e.g., if the resulting value in register L
is 0H), the next instruction is skipped. The contents of data memory and the carry flag value are
not affected.

Operand Binary Code Operation Notation

A,@HL 1 0 0 0 1 0 1 0 A ← (HL), then L ← L+1;
skip if L = 0H

Example: Assume that register pair HL contains the address 2FH and internal RAM location 2FH contains
the value 0FH:

LD HL,#2FH
LDI A,@HL ; A ← (HL) and L ← L+1
JPS XXX ; Skip
JPS YYY ; H ← 2H and L ← 0H

The instruction 'JPS XXX' is skipped since an overflow occurred after the 'LDI A,@HL' and the
instruction 'JPS YYY' is executed.

SAM47 INSTRUCTION SET KS57C2302/C2304/P2304 MICROCONTROLLER

5-70

NOP — No Operation

NOP

Operation: Operand Operation Summary Bytes Cycles

– No operation 1 1

Description: No operation is performed by a NOP instruction. It is typically used for timing delays.

One NOP causes a 1-cycle delay: with a 1 µs cycle time, five NOPs would therefore cause a 5 µs
delay. Program execution continues with the instruction immediately following the NOP. Only the
PC is affected. At least three NOP instructions should follow a STOP or IDLE instruction.

Operand Binary Code Operation Notation

– 1 0 1 0 0 0 0 0 No operation

Example: Three NOP instructions follow the STOP instruction to provide a short interval for clock
stabilization before power-down mode is initiated:

STOP
NOP
NOP
NOP

KS57C2302/C2304/P2304 MICROCONTROLLER SAM47 INSTRUCTION SET

5-71

OR — Logical OR

OR dst,src

Operation: Operand Operation Summary Bytes Cycles

A, #im Logical-OR immediate data to A 2 2

A, @HL Logical-OR indirect data memory contents to A 1 1

EA,RR Logical-OR double register to EA 2 2

RRb,EA Logical-OR EA to double register 2 2

Description: The source operand is logically ORed with the destination operand. The result is stored in the
destination. The contents of the source are unaffected.

Operand Binary Code Operation Notation

A, #im 1 1 0 1 1 1 0 1 A ← A OR im

0 0 1 0 d3 d2 d1 d0

A, @HL 0 0 1 1 1 0 1 0 A ← A OR (HL)

EA,RR 1 1 0 1 1 1 0 0 EA ← EA OR RR

0 0 1 0 1 r2 r1 0

RRb,EA 1 1 0 1 1 1 0 0 RRb ← RRb OR EA

0 0 1 0 0 r2 r1 0

Example: If the accumulator contains the value 0C3H (11000011B) and register pair HL the value 55H
(01010101B), the instruction

OR EA,@HL

leaves the value 0D7H (11010111B) in the accumulator .

SAM47 INSTRUCTION SET KS57C2302/C2304/P2304 MICROCONTROLLER

5-72

POP — Pop From Stack

POP dst

Operation: Operand Operation Summary Bytes Cycles

RR Pop to register pair from stack 1 1

SB Pop SMB and SRB values from stack 2 2

Description: The contents of the RAM location addressed by the stack pointer is read, and the SP is
incremented by two. The value read is then transferred to the variable indicated by the
destination operand.

Operand Binary Code Operation Notation

RR 0 0 1 0 1 r2 r1 0 RRL ← (SP), RRH ← (SP+1)
SP ← SP+2

SB 1 1 0 1 1 1 0 1 (SRB) ← (SP), SMB ← (SP+1),
SP ← SP+2

0 1 1 0 0 1 1 0

Example: The SP value is equal to 0EDH, and RAM locations 0EFH through 0EDH contain the values 2H,
3H, and 4H, respectively. The instruction

POP HL

leaves the stack pointer set to 0EFH and the data pointer pair HL set to 34H.

KS57C2302/C2304/P2304 MICROCONTROLLER SAM47 INSTRUCTION SET

5-73

PUSH — Push Onto Stack

PUSH src

Operation: Operand Operation Summary Bytes Cycles

RR Push register pair onto stack 1 1

SB Push SMB and SRB values onto stack 2 2

Description: The SP is then decreased by two and the contents of the source operand are copied into the
RAM location addressed by the stack pointer, thereby adding a new element to the top of the
stack.

Operand Binary Code Operation Notation

RR 0 0 1 0 1 r2 r1 1 (SP–1) ← RRH, (SP–2) ← RRL
SP ← SP–2

SB 1 1 0 1 1 1 0 1 (SP–1) ← SMB, (SP–2) ← SRB;
(SP) ← SP–2

0 1 1 0 0 1 1 1

Example: As an interrupt service routine begins, the stack pointer contains the value 0FAH and the data
pointer register pair HL contains the value 20H. The instruction

PUSH HL

leaves the stack pointer set to 0F8H and stores the values 2H and 0H in RAM locations 0F9H
and 0F8H, respectively.

SAM47 INSTRUCTION SET KS57C2302/C2304/P2304 MICROCONTROLLER

5-74

RCF — Reset Carry Flag

RCF

Operation: Operand Operation Summary Bytes Cycles

– Reset carry flag to logic zero 1 1

Description: The carry flag is cleared to logic zero, regardless of its previous value.

Operand Binary Code Operation Notation

– 1 1 1 0 0 1 1 0 C ← 0

Example: Assuming the carry flag is set to logic one, the instruction

RCF

resets (clears) the carry flag to logic zero.

KS57C2302/C2304/P2304 MICROCONTROLLER SAM47 INSTRUCTION SET

5-75

REF — Reference Instruction

REF dst

Operation: Operand Operation Summary Bytes Cycles

memc Reference code 1 3 *

* The REF instruction for a 16K CALL instruction is 4 cycles.

Description: The REF instruction is used to rewrite into 1-byte form, arbitrary 2-byte or 3-byte instructions (or
two 1-byte instructions) stored in the REF instruction reference area in program memory. REF
reduces the number of program memory accesses for a program.

Operand Binary Code Operation Notation

memc t7 t6 t5 t4 t3 t2 t1 t0 PC11–0 = memc7–4, memc3–0 < 1

TJP and TCALL are 2-byte pseudo-instructions that are used only to specify the reference area:

1. When the reference area is specified by the TJP instruction,
memc.7–6 = 00
PC11–0 ← memc.3–0 + (memc + 1)

2. When the reference area is specified by the TCALL instruction,
memc.7–6 = 01
(SP–4) (SP–1) (SP–2) ← PC11–0
SP–3 ← EMB, ERB, 0, 0
PC11–0 ← memc.3–0 + (memc + 1)
SP ← SP–4

When the reference area is specified by any other instruction, the 'memc' and 'memc + 1'
instructions are executed.

Instructions referenced by REF occupy 2 bytes of memory space (for two 1-byte instructions or
one 2-byte instruction) and must be written as an even number from 0020H to 007FH in ROM. In
addition, the destination address of the TJP and TCALL instructions must be located with the
0FFFH address. TJP and TCALL are reference instructions for JP/JPS and CALL/CALLS.

If the instruction following a REF is subject to the 'redundancy effect', the redundant instruction is
skipped. If, however, the REF follows a redundant instruction, it is executed.

On the other hand, the binary code of a REF instruction is 1 byte. The upper 4 bits become the
higher address bits of the referenced instruction, and the lower 4 bits of the referenced instruction
(x 1/2) becomes the lower address, producing a total of 8 bits or 1 byte (see Example 3 below).

SAM47 INSTRUCTION SET KS57C2302/C2304/P2304 MICROCONTROLLER

5-76

REF — Reference Instruction

REF (Continued)

Examples: 1. Instructions can be executed efficiently using REF, as shown in the following example:

ORG 0020H

AAA LD HL,#00H
BBB LD EA,#FFH
CCC TCALL SUB1
DDD TJP SUB2

•
•
•
ORG 0080H

REF AAA ; LD HL,#00H
REF BBB ; LD EA,#FFH
REF CCC ; CALL SUB1
REF DDD ; JP SUB2

2. The following example shows how the REF instruction is executed in relation to LD
instructions that have a 'redundancy effect':

ORG 0020H

AAA LD EA,#40H
•
•
•
ORG 0100H

LD EA,#30H
REF AAA ; Not skipped
•
•

REF AAA
LD EA,#50H ; Skipped
SRB 2

KS57C2302/C2304/P2304 MICROCONTROLLER SAM47 INSTRUCTION SET

5-77

REF — Reference Instruction

REF (Concluded)

Examples: 3. In this example the binary code of 'REF A1' at locations 20H–21H is 20H, for 'REF A2' at
locations 22H–23H, it is 21H, and for 'REF A3' at 24H–25H, the binary code is 22H :

Opcode Symbol Instruction

ORG 0020H

83 00 A1 LD HL,#00H
83 03 A2 LD HL,#03H
83 05 A3 LD HL,#05H
83 10 A4 LD HL,#10H
83 26 A5 LD HL,#26H
83 08 A6 LD HL,#08H
83 0F A7 LD HL,#0FH
83 F0 A8 LD HL,#0F0H
83 67 A9 LD HL,#067H
41 0B A10 TCALL SUB1
01 0D A11 TJP SUB2

•
•
•
ORG 0100H

20 REF A1 ; LD HL,#00H
21 REF A2 ; LD HL,#03H
22 REF A3 ; LD HL,#05H
23 REF A4 ; LD HL,#10H
24 REF A5 ; LD HL,#26H
25 REF A6 ; LD HL,#08H
26 REF A7 ; LD HL,#0FH
27 REF A8 ; LD HL,#0F0H
30 REF A9 ; LD HL,#067H
31 REF A10 ; CALL SUB1
32 REF A11 ; JP SUB2

SAM47 INSTRUCTION SET KS57C2302/C2304/P2304 MICROCONTROLLER

5-78

RET — Return From Subroutine

RET

Operation: Operand Operation Summary Bytes Cycles

– Return from subroutine 1 3

Description: RET pops the PC values successively from the stack, incrementing the stack pointer by six.
Program execution continues from the resulting address, generally the instruction immediately
following a CALL or CALLS.

Operand Binary Code Operation Notation

– 1 1 0 0 0 1 0 1 PC11–8 ← (SP+1) (SP)
PC7–0 ← (SP+2) (SP+3)
PSW ← EMB,ERB
SP ← SP+ 6

Example: The stack pointer contains the value 0FAH. RAM locations 0FAH, 0FBH, 0FCH, and 0FDH
contain 1H, 0H, 5H, and 2H, respectively. The instruction

RET

leaves the stack pointer with the new value of 00H and program execution continues from
location 0125H.

During a return from subroutine, PC values are popped from stack locations as follows:

SP → PC11 – PC8

SP + 1 0 0 0 0

SP + 2 PC3 – PC0

SP + 3 PC7 – PC4

SP + 4 0 0 EMB ERB

SP + 5 0 0 0 0

SP + 6

KS57C2302/C2304/P2304 MICROCONTROLLER SAM47 INSTRUCTION SET

5-79

RRC — Rotate Accumulator Right Through Carry

RRC A

Operation: Operand Operation Summary Bytes Cycles

A Rotate right through carry bit 1 1

Description: The four bits in the accumulator and the carry flag are together rotated one bit to the right. Bit 0
moves into the carry flag and the original carry value moves into the bit 3 accumulator position.

C

3 0

Operand Binary Code Operation Notation

A 1 0 0 0 1 0 0 0 C ← A.0, A3 ← C
A.n–1 ← A.n (n = 1, 2, 3)

Example: The accumulator contains the value 5H (0101B) and the carry flag is cleared to logic zero. The
instruction

RRC A

leaves the accumulator with the value 2H (0010B) and the carry flag set to logic one.

SAM47 INSTRUCTION SET KS57C2302/C2304/P2304 MICROCONTROLLER

5-80

SBC — Subtract With Carry

SBC dst,src

Operation: Operand Operation Summary Bytes Cycles

A,@HL Subtract indirect data memory from A with carry 1 1

EA,RR Subtract register pair (RR) from EA with carry 2 2

RRb,EA Subtract EA from register pair (RRb) with carry 2 2

Description: SBC subtracts the source and carry flag value from the destination operand, leaving the result in
the destination. SBC sets the carry flag if a borrow is needed for the most significant bit;
otherwise it clears the carry flag. The contents of the source are unaffected.

If the carry flag was set before the SBC instruction was executed, a borrow was needed for the
previous step in multiple precision subtraction. In this case, the carry bit is subtracted from the
destination along with the source operand.

Operand Binary Code Operation Notation

A,@HL 0 0 1 1 1 1 0 0 C,A ← A – (HL) – C

EA,RR 1 1 0 1 1 1 0 0 C, EA ← EA –RR – C

1 1 0 0 1 r2 r1 0

RRb,EA 1 1 0 1 1 1 0 0 C,RRb ← RRb – EA – C

1 1 0 0 0 r2 r1 0

Examples: 1. The extended accumulator contains the value 0C3H, register pair HL the value 0AAH, and
the carry flag is set to "1":

SCF ; C ← "1"
SBC EA,HL ; EA ← 0C3H – 0AAH – 1H, C ← "0"
JPS XXX ; Jump to XXX; no skip after SBC

2. If the extended accumulator contains the value 0C3H, register pair HL the value 0AAH, and
the carry flag is cleared to "0":

RCF ; C ← "0"
SBC EA,HL ; EA ← 0C3H – 0AAH – 0H = 19H, C ← "0"
JPS XXX ; Jump to XXX; no skip after SBC

KS57C2302/C2304/P2304 MICROCONTROLLER SAM47 INSTRUCTION SET

5-81

SBC — Subtract With Carry

SBC (Continued)

Examples: 3. If SBC A,@HL is followed by an ADS A,#im, the SBC skips on 'no borrow' to the instruction
immediately after the ADS. An 'ADS A,#im' instruction immediately after the 'SBC A,@HL'
instruction does not skip even if an overflow occurs. This function is useful for decimal
adjustment operations.

a. 8 – 6 decimal addition (the contents of the address specified by the HL register is 6H):

RCF ; C ← "0"
LD A,#8H ; A ← 8H
SBC A,@HL ; A ← 8H – 6H – C(0) = 2H, C ← "0"
ADS A,#0AH ; Skip this instruction because no borrow after SBC result
JPS XXX

b. 3 – 4 decimal addition (the contents of the address specified by the HL register is 4H):

RCF ; C ← "0"
LD A,#3H ; A ← 3H
SBC A,@HL ; A ← 3H – 4H – C(0) = 0FH, C ← "1"
ADS A,#0AH ; No skip. A ← 0FH + 0AH = 9H

; (The skip function of 'ADS A,#im' is inhibited after a
; 'SBC A,@HL' instruction even if an overflow occurs.)

JPS XXX

SAM47 INSTRUCTION SET KS57C2302/C2304/P2304 MICROCONTROLLER

5-82

SBS — Subtract

SBS dst,src

Operation: Operand Operation Summary Bytes Cycles

A,@HL Subtract indirect data memory from A; skip on borrow 1 1 + S

EA,RR Subtract register pair (RR) from EA; skip on borrow 2 2 + S

RRb,EA Subtract EA from register pair (RRb); skip on borrow 2 2 + S

Description: The source operand is subtracted from the destination operand and the result is stored in the
destination. The contents of the source are unaffected. A skip is executed if a borrow occurs. The
value of the carry flag is not affected.

Operand Binary Code Operation Notation

A,@HL 0 0 1 1 1 1 0 1 A ← A – (HL); skip on borrow

EA,RR 1 1 0 1 1 1 0 0 EA ← EA – RR; skip on borrow

1 0 1 1 1 r2 r1 0

RRb,EA 1 1 0 1 1 1 0 0 RRb ← RRb – EA; skip on borrow

1 0 1 1 0 r2 r1 0

Examples: 1. The accumulator contains the value 0C3H, register pair HL contains the value 0C7H, and the
carry flag is cleared to logic zero:

RCF ; C ← "0"
SBS EA,HL ; EA ← 0C3H – 0C7H, C ← "0"

; SBS instruction skips on borrow,
; but carry flag value is not affected

JPS XXX ; Skip because a borrow occurred
JPS YYY ; Jump to YYY is executed

2. The accumulator contains the value 0AFH, register pair HL contains the value 0AAH, and the
carry flag is set to logic one:

SCF ; C ← "1"
SBS EA,HL ; EA ← 0AFH – 0AAH, C ← "1"
JPS XXX ; Jump to XXX

; JPS was not skipped since no "borrow" occurred after SBS

KS57C2302/C2304/P2304 MICROCONTROLLER SAM47 INSTRUCTION SET

5-83

SCF — Set Carry Flag

SCF

Operation: Operand Operation Summary Bytes Cycles

– Set carry flag to logic one 1 1

Description: The SCF instruction sets the carry flag to logic one, regardless of its previous value.

Operand Binary Code Operation Notation

– 1 1 1 0 0 1 1 1 C ← 1

Example: If the carry flag is cleared to logic zero, the instruction

SCF

sets the carry flag to logic one.

SAM47 INSTRUCTION SET KS57C2302/C2304/P2304 MICROCONTROLLER

5-84

SMB — Select Memory Bank

SMB n

Operation: Operand Operation Summary Bytes Cycles

n Select memory bank 2 2

Description: The SMB instruction sets the upper four bits of a 12-bit data memory address to select a specific
memory bank. The constants 0, 1, and 15 are usually used as the SMB operand to select the
corresponding memory bank. All references to data memory addresses fall within the following
address ranges:

Please note that since data memory spaces differ for various devices in the SAM47 product
family, the 'n' value of the SMB instruction will also vary.

Addresses Register Areas Bank SMB

000H–01FH Working registers 0 0

020H–0FFH Stack and general-purpose registers

1E0H–1FFH Display registers 1 1

F80H–FFFH I/O-mapped hardware registers 15 15

The enable memory bank (EMB) flag must always be set to "1" in order for the SMB instruction
to execute successfully for memory banks 0, 1, and 15.

Format Binary Code Operation Notation

n 1 1 0 1 1 1 0 1 SMB ← n (n = 0, 1, 15)

0 1 0 0 d3 d2 d1 d0

Example: If the EMB flag is set, the instruction

SMB 0

selects the data memory address range for bank 0 (000H–0FFH) as the working memory bank.

KS57C2302/C2304/P2304 MICROCONTROLLER SAM47 INSTRUCTION SET

5-85

SRB — Select Register Bank

SRB n

Operation: Operand Operation Summary Bytes Cycles

n Select register bank 2 2

Description: The SRB instruction selects one of four register banks in the working register memory area. The
constant value used with SRB is 0, 1, 2, or 3. The following table shows the effect of SRB
settings:

ERB Setting SRB Settings Selected Register Bank

3 2 1 0

0 0 0 x x Always set to bank 0

0 0 Bank 0

1 0 0 0 1 Bank 1

1 0 Bank 2

1 1 Bank 3

NOTE: 'x' = not applicable.

The enable register bank flag (ERB) must always be set for the SRB instruction to execute
successfully for register banks 0, 1, 2, and 3. In addition, if the ERB value is logic zero, register
bank 0 is always selected, regardless of the SRB value.

Operand Binary Code Operation Notation

n 1 1 0 1 1 1 0 1 SRB ← n (n = 0, 1, 2, 3)

0 1 0 1 0 0 d1 d0

Example: If the ERB flag is set, the instruction

SRB 3

selects register bank 3 (018H–01FH) as the working memory register bank.

SAM47 INSTRUCTION SET KS57C2302/C2304/P2304 MICROCONTROLLER

5-86

SRET — Return From Subroutine and Skip

SRET

Operation: Operand Operation Summary Bytes Cycles

– Return from subroutine and skip 1 3 + S

Description: SRET is normally used to return to the previously executing procedure at the end of a subroutine
that was initiated by a CALL or CALLS instruction. SRET skips the resulting address, which is
generally the instruction immediately after the point at which the subroutine was called. Then,
program execution continues from the resulting address and the contents of the location
addressed by the stack pointer are popped into the program counter.

Operand Binary Code Operation Notation

– 1 1 1 0 0 1 0 1 PC11–8 ← (SP + 1) (SP)
PC7–0 ← (SP + 3) (SP + 2)
EMB,ERB ← (SP + 5) (SP + 4)
SP ← SP + 6
then skip

Example: If the stack pointer contains the value 0FAH and RAM locations 0FAH, 0FBH, 0FCH, and 0FDH
contain the values 1H, 0H, 5H, and 2H, respectively, the instruction

SRET

leaves the stack pointer with the value 00H and the program returns to continue execution at
location 0125H. then skips unconditionally.

During a return from subroutine, data is popped from the stack to the PC as follows:

SP → PC11 – PC8

SP + 1 0 0 0 0

SP + 2 PC3 – PC0

SP + 3 PC7 – PC4

SP + 4 0 0 EMB ERB

SP + 5 0 0 0 0

SP + 6

KS57C2302/C2304/P2304 MICROCONTROLLER SAM47 INSTRUCTION SET

5-87

STOP — Stop Operation

STOP

Operation: Operand Operation Summary Bytes Cycles

– Engage CPU stop mode 2 2

Description: The STOP instruction stops the system clock by setting bit 3 of the power control register
(PCON) to logic one. When STOP executes, all system operations are halted with the exception
of some peripheral hardware with special power-down mode operating conditions.

In application programs, a STOP instruction must be immediately followed by at least three NOP
instructions. This ensures an adequate time interval for the clock to stabilize before the next
instruction is executed. If three NOP instructions are not used after STOP instruction, leakage
current could be flown because of the floating state in the internal bus.

Operand Binary Code Operation Notation

– 1 1 1 1 1 1 1 1 PCON.3 ← 1

1 0 1 1 0 0 1 1

Example: Given that bit 3 of the PCON register is cleared to logic zero, and all systems are operational, the
instruction sequence

STOP
NOP
NOP
NOP

sets bit 3 of the PCON register to logic one, stopping all controller operations (with the exception
of some peripheral hardware). The three NOP instructions provide the necessary timing delay for
clock stabilization before the next instruction in the program sequence is executed.

SAM47 INSTRUCTION SET KS57C2302/C2304/P2304 MICROCONTROLLER

5-88

VENT — Load EMB, ERB, and Vector Address

VENTn dst

Operation: Operand Operation Summary Bytes Cycles

EMB (0,1)
ERB (0,1)
ADR

Load enable memory bank flag (EMB) and the enable
register bank flag (ERB) and program counter to
vector address, then branch to the corresponding
location.

2 2

Description: The VENT instruction loads the contents of the enable memory bank flag (EMB) and enable
register bank flag (ERB) into the respective vector addresses. It then points the interrupt service
routine to the corresponding branching locations. The program counter is loaded automatically
with the respective vector addresses which indicate the starting address of the respective vector
interrupt service routines.

The EMB and ERB flags should be modified using VENT before the vector interrupts are
acknowledged. Then, when an interrupt is generated, the EMB and ERB values of the previous
routine are automatically pushed onto the stack and then popped back when the routine is
completed.

After the return from interrupt (IRET) you do not need to set the EMB and ERB values again.
Instead, use BITR and BITS to clear these values in your program routine.

The starting addresses for vector interrupts and reset operations are pointed to by the VENTn
instruction. These addresses must be stored in ROM locations 0000H–0FFFH. Generally, the
VENTn instructions are coded starting at location 0000H.

The format for VENT instructions is as follows:

VENTn d1,d2,ADDR

EMB ← d1 ("0" or "1")
ERB ← d2 ("0" or "1")
PC ← ADDR (address to branch
n = device-specific module address code (n = 0–n)

Operand Binary Code Operation Notation

EMB (0,1)
ERB (0,1)
ADR

E
M
B

E
R
B

0 0 a11 a10 a9 a8 ROM (2 x n) 7–6 ← EMB, ERB
ROM (2 x n) 5–4 ← 0, PC12
ROM (2 x n) 3–0 ← PC11–8
ROM (2 x n + 1) 7–0 ← PC7–0
(n = 0, 1, 2, 3, 4, 5, 6, 7)

a7 a6 a5 a4 a3 a2 a1 a0

KS57C2302/C2304/P2304 MICROCONTROLLER SAM47 INSTRUCTION SET

5-89

VENT — Load EMB, ERB, and Vector Address

VENTn (Continued)

Example: The instruction sequence

ORG 0000H
VENT0 1,0,RESET
VENT1 0,1,INTB
VENT2 0,1,INT0
VENT3 0,1,INT1
ORG 000AH
VENT5 0,1,INTT0

causes the program sequence to branch to the RESET routine labeled 'RESET,' setting EMB to
"1" and ERB to "0" when RESET is activated. When a basic timer interrupt is generated, VENT1
causes the program to branch to the basic timer's interrupt service routine, INTB, and to set the
EMB value to "0" and the ERB value to "1". VENT2 then branches to INT0, VENT3 to INT1, and
so on, setting the appropriate EMB and ERB values.

SAM47 INSTRUCTION SET KS57C2302/C2304/P2304 MICROCONTROLLER

5-90

XCH — Exchange A or EA with Nibble or Byte

XCH dst,src

Operation: Operand Operation Summary Bytes Cycles

A,DA Exchange A and data memory contents 2 2

A,Ra Exchange A and register (Ra) contents 1 1

A,@RRa Exchange A and indirect data memory 1 1

EA,DA Exchange EA and direct data memory contents 2 2

EA,RRb Exchange EA and register pair (RRb) contents 2 2

EA,@HL Exchange EA and indirect data memory contents 2 2

Description: The instruction XCH loads the accumulator with the contents of the indicated destination variable
and writes the original contents of the accumulator to the source.

Operand Binary Code Operation Notation

A,DA 0 1 1 1 1 0 0 1 A ↔ DA

a7 a6 a5 a4 a3 a2 a1 a0

A,Ra 0 1 1 0 1 r2 r1 r0 A ↔ Ra

A,@RRa 0 1 1 1 1 i2 i1 i0 A ↔ (RRa)

EA,DA 1 1 0 0 1 1 1 1 A ↔ DA,E ↔ DA + 1

a7 a6 a5 a4 a3 a2 a1 a0

EA,RRb 1 1 0 1 1 1 0 0 EA ↔ RRb

1 1 1 0 0 r2 r1 0

EA,@HL 1 1 0 1 1 1 0 0 A ↔ (HL), E ↔ (HL + 1)

0 0 0 0 0 0 0 1

Example: Double register HL contains the address 20H. The accumulator contains the value 3FH
(00111111B) and internal RAM location 20H the value 75H (01110101B). The instruction

XCH EA,@HL

leaves RAM location 20H with the value 3FH (00111111B) and the extended accumulator with
the value 75H (01110101B).

KS57C2302/C2304/P2304 MICROCONTROLLER SAM47 INSTRUCTION SET

5-91

XCHD — Exchange and Decrement

XCHD dst,src

Operation: Operand Operation Summary Bytes Cycles

A,@HL Exchange A and data memory contents; decrement
contents of register L and skip on borrow

1 2 + S

Description: The instruction XCHD exchanges the contents of the accumulator with the RAM location
addressed by register pair HL and then decrements the contents of register L. If the content of
register L is 0FH, the next instruction is skipped. The value of the carry flag is not affected.

Operand Binary Code Operation Notation

A,@HL 0 1 1 1 1 0 1 1 A ↔ (HL), then L ← L–1;
skip if L = 0FH

Example: Register pair HL contains the address 20H and internal RAM location 20H contains the value
0FH:

LD HL,#20H
LD A,#0H
XCHD A,@HL ; A ← 0FH and L ← L – 1, (HL) ← "0"
JPS XXX ; Skipped since a borrow occurred
JPS YYY ; H ← 2H, L ← 0FH

YYY XCHD A,@HL ; (2FH) ← 0FH, A ← (2FH), L ← L – 1 = 0EH
•
•
•

The 'JPS YYY' instruction is executed since a skip occurs after the XCHD instruction.

SAM47 INSTRUCTION SET KS57C2302/C2304/P2304 MICROCONTROLLER

5-92

XCHI — Exchange and Increment

XCHI dst,src

Operation: Operand Operation Summary Bytes Cycles

A,@HL Exchange A and data memory contents; increment
contents of register L and skip on overflow

1 2 + S

Description: The instruction XCHI exchanges the contents of the accumulator with the RAM location
addressed by register pair HL and then increments the contents of register L. If the content of
register L is 0H, a skip is executed. The value of the carry flag is not affected.

Operand Binary Code Operation Notation

A,@HL 0 1 1 1 1 0 1 0 A ↔ (HL), then L ← L+1;
skip if L = 0H

Example: Register pair HL contains the address 2FH and internal RAM location 2FH contains 0FH:

LD HL,#2FH
LD A,#0H
XCHI A,@HL ; A ← 0FH and L ← L + 1 = 0, (HL) ← "0"
JPS XXX ; Skipped since an overflow occurred
JPS YYY ; H ← 2H, L ← 0H

YYY XCHI A,@HL ; (20H) ← 0FH, A ← (20H), L ← L + 1 = 1H
•
•
•

The 'JPS YYY' instruction is executed since a skip occurs after the XCHI instruction.

KS57C2302/C2304/P2304 MICROCONTROLLER SAM47 INSTRUCTION SET

5-93

XOR — Logical Exclusive OR

XOR dst,src

Operation: Operand Operation Summary Bytes Cycles

A,#im Exclusive-OR immediate data to A 2 2

A,@HL Exclusive-OR indirect data memory to A 1 1

EA,RR Exclusive-OR register pair (RR) to EA 2 2

RRb,EA Exclusive-OR register pair (RRb) to EA 2 2

Description: XOR performs a bit wise logical XOR operation between the source and destination variables and
stores the result in the destination. The source contents are unaffected.

Operand Binary Code Operation Notation

A,#im 1 1 0 1 1 1 0 1 A ← A XOR im

0 0 1 1 d3 d2 d1 d0

A,@HL 0 0 1 1 1 0 1 1 A ← A XOR (HL)

EA,RR 1 1 0 1 1 1 0 0 EA ← EA XOR (RR)

0 0 1 1 0 r2 r1 0

RRb,EA 1 1 0 1 1 1 0 0 RRb ← RRb XOR EA

0 0 1 1 0 r2 r1 0

Example: If the extended accumulator contains 0C3H (11000011B) and register pair HL contains 55H
(01010101B), the instruction

XOR EA,HL

leaves the value 96H (10010110B) in the extended accumulator.

SAM47 INSTRUCTION SET KS57C2302/C2304/P2304 MICROCONTROLLER

5-94

NOTES

Oscillator Circuits

Interrupts

Power-Down

RESET

I/O Ports

Timers and Timer/Counters

LCD Controller/Driver

Electrical Data

Mechanical Data

KS57P2304 OTP

Development Tools

KS57C2302/C2304/P2304 MICROCONTROLLER OSCILLATOR CIRCUITS

6-1

6 OSCILLATOR CIRCUITS

OVERVIEW

The KS57C2302/C2304microcontroller has two oscillator circuits: a main system clock circuit, and a subsystem
clock circuit. The CPU and peripheral hardware operate on the system clock frequency supplied through these
circuits. Specifically, a clock pulse is required by the following peripheral modules:

— LCD controller

— Basic timer

— Timer/counter 0

— Watch timer

— Clock output circuit

CPU Clock Notation

In this document, the following notation is used for descriptions of the CPU clock:

fx Main system clock

fxt Subsystem clock

fxx Selected system clock

OSCILLATOR CIRCUITS KS57C2302/C2304/P2304 MICROCONTROLLER

6-2

Clock Control Registers

When the system clock mode control register, SCMOD, and the power control register, PCON, are both cleared
to zero after RESET, the normal CPU operating mode is enabled, a main system clock of fx/64 is selected, and
main system clock oscillation is initiated.

PCON is used to select normal CPU operating mode or one of two power-down modes — stop or idle. Bits 3 and
2 of the PCON register can be manipulated by a STOP or IDLE instruction to engage stop or idle power-down
mode.

The system clock mode control register, SCMOD, lets you select the main system clock (fx) or a subsystem clock
(fxt) as the CPU clock and to start (or stop) main or sub system clock oscillation. The resulting clock source,
either main system clock or subsystem clock, is referred to as the CPU clock.

The main system clock is selected and oscillation started when all SCMOD bits are cleared to logic zero. By
setting SCMOD.3–.2 and SCMOD.0 to different values, CPU can operate in a subsystem clock source and start
or stop main or sub system clock oscillation. To stop main system clock oscillation, you must use the STOP
instruction (assuming the main system clock is selected) or manipulate SCMOD.3 to “1” (assuming the sub
system clock is selected).

The main system clock frequencies can be divided by 4, 8, or 64 and a subsystem clock frequencies can only be
divided by 4. By manipulating PCON bits 1 and 0, you select one of the following frequencies as CPU clock.

fx/4, fxt/4, fx/8, fx/64

Using a Subsystem Clock

If a subsystem clock is being used as the selected system clock, the idle power-down mode can be initiated by
executing an IDLE instruction. The subsystem clock can be stopped by setting SCMOD.2 to “1”.

The watch timer, buzzer and LCD display operate normally with a subsystem clock source, since they operate at
very slow speeds (122 µs at 32.768 kHz) and with very low power consumption.

KS57C2302/C2304/P2304 MICROCONTROLLER OSCILLATOR CIRCUITS

6-3

XTin XTout

Oscillator
stop

CPU clock

Wait release signal

Internal RESET signal

Power down release

PCON.3, .2

IDLE

STOP

fxtfx
Watch Timer
LCD Controller

Basic Timer
Timer/Counter
Watch Timer
LCD Controller
Clock Output Circuit

fxx

CPU stop signal
(By IDLE or STOP instruction)

Xin Xout

 fx : Main-system clock
 fxt : Sub-system clock
 fxx : System clock

Sub-
system

Oscillator

1 / 4

Main-system
Oscillator

Circuit

Selector
SCMOD.3

SCMOD.0

SCMOD.2

PCON.0

PCON.1

PCON.2

PCON.3

Frequenc
y

Dividing

1/8 - 1/4096

Selector

1/2 1/16

Oscillator
Control
Circuit

Selector

fxtfx/1,2,16

OSC Stop

Clear

Figure 6-1. Clock Circuit Diagram

OSCILLATOR CIRCUITS KS57C2302/C2304/P2304 MICROCONTROLLER

6-4

MAIN SYSTEM OSCILLATOR CIRCUITS

Xin

Xout

Figure 6-2. Crystal/Ceramic Oscillator

Xin

Xout

Figure 6-3. External Oscillator

Xin

Xout

R

Figure 6-4. RC Oscillator

SUBSYSTEM OSCILLATOR CIRCUITS

XTin

XTout
32.768 kHz

Figure 6-5. Crystal/Ceramic Oscillator

XTin

XTout

EXTERNAL
CLOCK

Figure 6-6. External Oscillator

KS57C2302/C2304/P2304 MICROCONTROLLER OSCILLATOR CIRCUITS

6-5

POWER CONTROL REGISTER (PCON)

The power control register (PCON) is a 4-bit register that is used to select the CPU clock frequency and to con-
trol CPU operating and power-down modes. The PCON can be addressed directly by 4-bit write instructions or
indirectly by the instructions IDLE and STOP.

FB3H PCON.3 PCON.2 PCON.1 PCON.0 PCON

PCON.3 and PCON.2 can be addressed only by the STOP and IDLE instructions, respectively, to engage the
idle and stop power-down modes. Idle and stop modes can be initiated by these instruction despite the current
value of the enable memory bank flag (EMB). PCON bits 1 and 0 can be written only by 4-bit RAM control
instruction. PCON is a write-only register. There are three basic choices:

— Main system clock (fx) or subsystem clock (fxt);

— Divided fx clock frequency of 4, 8, or 64

— Divided fxt clock frequency of 4.

PCON.1 and PCON.0 settings are also connected with the system clock mode control register, SCMOD. If
SCMOD.0 = "0", the main system clock is always selected by the PCON.1 and PCON.0 setting; if SCMOD.0 =
"1" the subsystem clock is selected.
RESET sets PCON register values (and SCMOD) to logic zero.

Table 6-1. Power Control Register (PCON) Organization

PCON Bit Settings Resulting CPU Clock Frequency

PCON.1 PCON.0 SCMOD.0 = 0 SCMOD.0 = 1

0 0 fx/64 fxt/4

1 0 fx/8

1 1 fx/4

PCON Bit Settings Resulting CPU Operating Mode

PCON.3 PCON.2

0 0 Normal CPU operating mode

0 1 IDLE

1 0 STOP mode

OSCILLATOR CIRCUITS KS57C2302/C2304/P2304 MICROCONTROLLER

6-6

++ PROGRAMMING TIP — Setting the CPU Clock

To set the CPU clock to 0.95 µs at 4.19 MHz:

BITS EMB

SMB 15

LD A,#3H

LD PCON,A

INSTRUCTION CYCLE TIMES

The unit of time that equals one machine cycle varies depending on whether the main system clock (fx) or a
subsystem clock (fxt) is used, and on how the oscillator clock signal is divided (by 4, 8, or 64). Table 6-2 shows
corresponding cycle times in microseconds.

Table 6-2. Instruction Cycle Times for CPU Clock Rates

Oscillation
Source

Selected
CPU Clock

Resulting
Frequency

Cycle Time (µsec)

fx = 4.19 MHz fx/64 65.5 kHz 15.3

fx/8 524.0 kHz 1.91

fx/4 1.05 MHz 0.95

fxt = 32.768 kHz fxt/4 8.19 kHz 122.0

KS57C2302/C2304/P2304 MICROCONTROLLER OSCILLATOR CIRCUITS

6-7

SYSTEM CLOCK MODE REGISTER (SCMOD)

The system clock mode register, SCMOD, is a 4-bit register that is used to select the CPU clock and to control
main and sub-system clock oscillation. SCMOD is mapped to the RAM address FB7H.

When main system clock is used as clock source, main system clock oscillation can be stopped by STOP
instruction or setting SCMOD.3 (not recommended).

When the clock source is subsystem clock, main system clock oscillation is stopped by setting SCMOD.3.
SCMOD.0, SCMOD2 and SCMOD.3 cannot be simultaneously modified. Sub-oscillation goes into stop mode
only by SCMOD.2. PCON which revokes stop mode cannot stop the sub-oscillation. The stop of sub-oscillation is
released only by reset.

RESET clears all SCMOD values to logic zero, selecting the main system clock (fx) as the CPU clock and starting
clock oscillation. The reset value of the SCMOD is 0.

SCMOD.3, SCMOD.2, SCMOD.0 bits can be manipulated by 1-bit write instructions (In other words, SCMOD.0,
SCMOD.2 and SCMOD.3 cannot be modified simultaneously by a 4-bit write). Bit 1 is always logic zero.

FB7H SCMOD.3 SCMOD.2 "0" SCMOD.0 SCMOD

A subsystem clock (fxt) can be selected as the system clock by manipulating the SCMOD.3 and SCMOD.0 bit
settings. If SCMOD.3 = "0" and SCMOD.0 = "1", the subsystem clock is selected and main system clock
oscillation continues. If SCMOD.3 = "1" and SCMOD.0 = "1", fxt is selected, but main system clock oscillation
stops.

If you have selected fx as the CPU clock, setting SCMOD.3 to "1" will stop main system clock oscillation. But this
mode must not be used. To stop main system clock oscillation safely, main oscillation clock should be stopped
only by a STOP instruction in main system clock mode.

Table 6-3. System Clock Mode Register (SCMOD) Organization

SCMOD Register Bit Settings Resulting Clock Selection

SCMOD.3 SCMOD.2 SCMOD.0 fx Oscillation fxt Oscillation CPU Clock (note)

0 0 0 On On fx

0 1 0 On Off fx

0 0 1 On On fxt

1 0 1 Off On fxt

NOTE: CPU clock is selected by PCON register settings.

OSCILLATOR CIRCUITS KS57C2302/C2304/P2304 MICROCONTROLLER

6-8

Table 6-4. Main/Sub Oscillation Stop Mode

Mode Condition Method to issue Osc Stop Osc Stop Release Source (2)

Main
Oscillation
STOP Mode

Main oscillator runs.
Sub oscillator runs
(stops).
System clock is the
main oscillation clock.

STOP instruction:
Main oscillator stops.
CPU is in idle mode.
Sub oscillator still runs
(stops).

Interrupt and reset:
After releasing stop mode, main
oscillation starts and oscillation
stabilization time is elapsed. And then
the CPU operates.
Oscillation stabilization time is
1/ {256 x BT clock (fx)}.

Set SCMOD.3 to “1” (1)

Main oscillator stops, halting
the CPU operation.
Sub oscillator still runs
(stops).

Reset:
Interrupt can’t start the main oscillation.
Therefore, the CPU operation can never
be restarted.

Main oscillator runs.
Sub oscillator runs.
System clock is the
sub oscillation clock.

STOP instruction: (1)

Main oscillator stops.
CPU is in idle mode.
Sub oscillator still runs.

BToverflow and reset:
After the overflow of basic timer [1/ {256
x BT clock (fxt)}], CPU operation and
main oscillation automatically start.

Set SCMOD.3 to “1”
Main oscillator stops.
CPU still operates.
Sub oscillator still runs.

Set SCMOD.3 to “0” or reset

Sub
oscillation
STOP Mode

Main oscillator runs.
Sub oscillator runs.
System clock is the
main oscillation clock.

Set SCMOD.2 to “1”
Main oscillator still runs.
CPU operates.
Sub oscillator stops.

Set SCMOD.2 to “0” or reset

Main oscillator runs
(stops).
Sub oscillator runs.
System clock is the
sub oscillation clock.

Set SCMOD.2 to “1”
Main oscillator still runs
(stops).
Sub oscillator stops, halting
the CPU operation.

Reset

NOTES: 1. This mode must not be used.
2. Oscillation stabilization time by interrupt is 1/ (256 x BT clocks). Oscillation stabilization time by a reset is

 31.3ms at 4.19Mhz, main oscillation clock.

KS57C2302/C2304/P2304 MICROCONTROLLER OSCILLATOR CIRCUITS

6-9

Table 6-5. System Operating Mode Comparison

Mode Condition STOP/IDLE Mode Start
Method

Current Consumption

Main operating
mode

Main oscillator runs.
Sub oscillator runs (stops).
System clock is the main
oscillation clock.

– A

Main Idle mode Main oscillator runs.
Sub oscillator runs (stops).
System clock is the main
oscillation clock.

IDLE instruction B

Main Stop
mode

Main oscillator runs.
Sub oscillator runs.
System clock is the main
oscillation clock.

STOP instruction D

Sub operating
mode

Main oscillator is stopped by
SCMOD.3.
Sub oscillator runs.
System clock is the sub
oscillation clock.

– C

Sub ldle Mode Main oscillator is stopped by
SCMOD.3.
Sub oscillator runs.
System clock is the sub
oscillation clock.

IDLE instruction D

Sub Stop mode Main oscillator is stopped by
SCMOD.3.
Sub oscillator runs.
System clock is the sub
oscillation clock.

Setting SCMOD.2 to “1”:
This mode can be released
only by an external reset.

E

Main/Sub Stop
mode

Main oscillator runs.
Sub oscillator is stopped by
SCMOD.2.
System clock is the main
oscillation clock.

STOP instruction:
This mode can be released by
an interrupt and reset.

E

NOTE: The current consumption is: A > B > C > D > E.

OSCILLATOR CIRCUITS KS57C2302/C2304/P2304 MICROCONTROLLER

6-10

SWITCHING THE CPU CLOCK

Together, bit settings in the power control register, PCON, and the system clock mode register, SCMOD, de-
termine whether a main system or a subsystem clock is selected as the CPU clock, and also how this frequency
is to be divided. This makes it possible to switch dynamically between main and subsystem clocks and to modify
operating frequencies.

SCMOD.3, scmod.2, and SCMOD.0 select the main system clock (fx) or a subsystem clock (fxt) and start or stop
main or sub system clock oscillation. PCON.1 and PCON.0 control the frequency divider circuit, and divide the
selected fx clock by 4, 8, 64, or fxt clock by 4.

NOTE

A clock switch operation does not go into effect immediately when you make the SCMOD and PCON
register modifications — the previously selected clock continues to run for a certain number of machine
cycles.

For example, you are using the default CPU clock (normal operating mode and a main system clock of fx/64)
and you want to switch from the fx clock to a subsystem clock and to stop the main system clock. To do this, you
first need to set SCMOD.0 to "1". This switches the clock from fx to fxt but allows main system clock oscillation
to continue. Before the switch actually goes into effect, a certain number of machine cycles must elapse. After
this time interval, you can then disable main system clock oscillation by setting SCMOD.3 to "1".

This same 'stepped' approach must be taken to switch from a subsystem clock to the main system clock: First,
clear SCMOD.3 to "0" to enable main system clock oscillation. Until main osc is stabilized, system clock must not
be changed. Then, after a certain number of machine cycles has elapsed, select the main system clock by
clearing all SCMOD values to logic zero.

Following a RESET, CPU operation starts with the lowest main system clock frequency of 15.3 µsec at 4.19 MHz
after the standard oscillation stabilization interval of 31.3 ms has elapsed. Table 6-6 details the number of
machine cycles that must elapse before a CPU clock switch modification goes into effect.

KS57C2302/C2304/P2304 MICROCONTROLLER OSCILLATOR CIRCUITS

6-11

Table 6-6. Elapsed Machine Cycles During CPU Clock Switch

AFTER SCMOD.0 = 0 SCMOD.0 = 1

BEFORE PCON.1 = 0 PCON.0 = 0 PCON.1 = 1 PCON.0 = 0 PCON.1 = 1 PCON.0 = 1

PCON.1 = 0 N/A 1 MACHINE CYCLE 1 MACHINE CYCLE N/A

PCON.0 = 0

SCMOD.0 = 0 PCON.1 = 1 8 MACHINE CYCLES N/A 8 MACHINE CYCLES N/A

PCON.0 = 0

PCON.1 = 1 16 MACHINE CYCLES 16 MACHINE CYCLES N/A fx / 4fxt

PCON.0 = 1 MACHINE

CYCLE

SCMOD.0 = 1 N/A N/A fx / 4fxt (M/C) N/A

NOTES:
1. Even if oscillation is stopped by setting SCMOD.3 during main system clock operation, the stop mode is not entered.
2. Since the XIN input is connected internally to VSS to avoid current leakage due to the crystal oscillator in stop mode, do

not set SCMOD.3 to "1" or STOP instruction when an external clock is used as the main system clock.
3. When the system clock is switched to the subsystem clock, it is necessary to disable any interrupts which may occur

during the time intervals shown in Table 6-6.
4. 'N/A' means 'not available'.
5. fx: Main–system clock, fxt: Sub–system clock, M/C: Machine Cycle.

When fx is 4.19 MHz, and fxt is 32.768 kHz.

++ PROGRAMMING TIP — Switching Between Main System and Subsystem Clock

1. Switch from the main system clock to the subsystem clock:

MA2SUB BITS SCMOD.0 ; Switches to subsystem clock
CALL DLY80 ; Delay 80 machine cycles
BITS SCMOD.3 ; Stop the main system clock
RET

DLY80 LD A,#0FH
DEL1 NOP

NOP
DECS A
JR DEL1
RET

2. Switch from the subsystem clock to the main system clock:

SUB2MA BITR SCMOD.3 ; Start main system clock oscillation
CALL DLY80 ; Delay 80 machine cycles
CALL DLY80 ; Delay 80 machine cycles
BITR SCMOD.0 ; Switch to main system clock
RET

OSCILLATOR CIRCUITS KS57C2302/C2304/P2304 MICROCONTROLLER

6-12

CLOCK OUTPUT MODE REGISTER (CLMOD)

The clock output mode register, CLMOD, is a 4-bit register that is used to enable or disable clock output to the
CLO pin and to select the CPU clock source and frequency. CLMOD is addressable by 4-bit write instructions
only.

FD0H CLMOD.3 "0" CLMOD.1 CLMOD.0 CLMOD

RESET clears CLMOD to logic zero, which automatically selects the CPU clock as the clock source (without
initiating clock oscillation), and disables clock output.

CLMOD.3 is the enable/disable clock output control bit; CLMOD.1 and CLMOD.0 are used to select one of four
possible clock sources and frequencies: normal CPU clock, fxx/8, fxx/16, or fxx/64.

Table 6-7. Clock Output Mode Register (CLMOD) Organization

CLMOD Bit Settings Resulting Clock Output

CLMOD.1 CLMOD.0 Clock Source Frequency

0 0 CPU clock (fx/4, fx/8, fx/64, fxt/4) 1.05 MHz, 524 kHz, 65.5 kHz

0 1 fxx/8 524 kHz

1 0 fxx/16 262 kHz

1 1 fxx/64 65.5 kHz

CLMOD.3 Result of CLMOD.3 Setting

0 Clock output is disabled

1 Clock output is enabled

NOTE: Assumes that fxx = 4.19 MHz.

KS57C2302/C2304/P2304 MICROCONTROLLER OSCILLATOR CIRCUITS

6-13

CLOCK OUTPUT CIRCUIT

The clock output circuit, used to output clock pulses to the CLO pin, has the following components:

— 4-bit clock output mode register (CLMOD)

— Clock selector

— Port mode flag

— CLO output pin (P2.2)

CLO

clocks
(fxx/8, fxx/16, fxx/64, CPU clock)

4

Clock
Selector

CLMOD.3

CLMOD.2

CLMOD.1

CLMOD.0

P2.2 OUTPUT LATCH PM 2

Figure 6-7. CLO Output Pin Circuit Diagram

CLOCK OUTPUT PROCEDURE

The procedure for outputting clock pulses to the CLO pin may be summarized as follows:

1. Disable clock output by clearing CLMOD.3 to logic zero.

2. Set the clock output frequency (CLMOD.1, CLMOD.0).

3. Load "0" to the output latch of the CLO pin (P2.2).

4. Set the P2.2 mode flag (PM2) to output mode.

5. Enable clock output by setting CLMOD.3 to logic one.

OSCILLATOR CIRCUITS KS57C2302/C2304/P2304 MICROCONTROLLER

6-14

++ PROGRAMMING TIP — CPU Clock Output to the CLO Pin

To output the CPU clock to the CLO pin:

BITS EMB
SMB 15
LD EA,#04H
LD PMG2,EA ; P2 ← Output mode
BITR P2.2 ; Clear P2.2 pin output latch
LD A,#9H
LD CLMOD,A

KS57C2302/C2304/P2304 MICROCONTROLLER INTERRUPTS

7-1

7 INTERRUPTS

OVERVIEW

The KS57C2302/C2304interrupt control circuit has five functional components:

— Interrupt enable flags (IEx)

— Interrupt request flags (IRQx)

— Interrupt master enable register (IME)

— Interrupt priority register (IPR)

— Power-down release signal circuit

Three kinds of interrupts are supported:

— Internal interrupts generated by on-chip processes

— External interrupts generated by external peripheral devices

— Quasi-interrupts used for edge detection and as clock sources

Table 7-1. Interrupt Types and Corresponding Port Pin(s)

Interrupt Type Interrupt Name Corresponding Port Pins

External interrupts INT0, INT1 P1.0, P1.1

Internal interrupts INTB, INTT0 Not applicable

Quasi-interrupts INT2, KS0–KS3 P1.2, P6.0–P6.3

INTW Not applicable

INTERRUPTS KS57C2302/C2304/P2304 MICROCONTROLLER

7-2

Vectored Interrupts

Interrupt requests may be processed as vectored interrupts in hardware, or they can be generated by program
software. A vectored interrupt is generated when the following flags and register settings, corresponding to the
specific interrupt (INTn) are set to logic one:

— Interrupt enable flag (IEx)

— Interrupt master enable flag (IME)

— Interrupt request flag (IRQx)

— Interrupt status flags (IS0, IS1)

— Interrupt priority register (IPR)

If all conditions are satisfied for the execution of a requested service routine, the start address of the interrupt is
loaded into the program counter and the program starts executing the service routine from this address.

EMB and ERB flags for RAM memory banks and registers are stored in the vector address area of the ROM
during interrupt service routines. The flags are stored at the beginning of the program with the VENT instruction.
The initial flag values determine the vectors for resets and interrupts. Enable flag values are saved during the
main routine, as well as during service routines. Any changes that are made to enable flag values during a
service routine are not stored in the vector address.

When an interrupt occurs, the enable flag values before the interrupt is initiated are saved along with the program
status word (PSW), and the enable flag values for the interrupt is fetched from the respective vector address.
Then, if necessary, you can modify the enable flags during the interrupt service routine. When the interrupt
service routine is returned to the main routine by the IRET instruction, the original values saved in the stack are
restored and the main program continues program execution with these values.

Software-Generated Interrupts

To generate an interrupt request from software, the program manipulates the appropriate IRQx flag. When the
interrupt request flag value is set, it is retained until all other conditions for the vectored interrupt have been met,
and the service routine can be initiated.

Multiple Interrupts

By manipulating the two interrupt status flags (IS0 and IS1), you can control service routine initialization and
thereby process multiple interrupts simultaneously.

If more than four interrupts are being processed at one time, you can avoid possible loss of working register data
by using the PUSH RR instruction to save register contents to the stack before the service routines are executed
in the same register bank. When the routines have executed successfully, you can restore the register contents
from the stack to working memory using the POP instruction.

Power-Down Mode Release

An interrupt (with the exception of INT0) can be used to release power-down mode (stop or idle). Interrupts for
power-down mode release are initiated by setting the corresponding interrupt enable flag. Even if the IME flag is
cleared to zero, power-down mode will be released by an interrupt request signal when the interrupt enable flag
has been set. In such cases, the interrupt routine will not be executed since IME = "0".

KS57C2302/C2304/P2304 MICROCONTROLLER INTERRUPTS

7-3

Jump to interrupt start address Verify interrupt source and clear
IRQx with a BTSTZ instruction

Request flag (IRQx) <-- 1

IEx = 1 ?

Interrupt is generated. (INT xx)

Retains value until IEx =1

Generates the corresponding vector
interrupt and releases power down mode.

Retains value until IME =1

High priority interrupt ?

IME = 1 ?

IS1,0 = 0, 0 ?

IS1,0 = 0, 1 ?

Stores the contents of PC and PSW in stack area;
set PC contents to corresponding vector address.

IS1,0 = 0,1

Retains until interrupt service
routine is completed.

IS1,0 = 1,0

NO

NO

NO

NO

YES

YES

YES

YES

YES

NO

Reset corresponding IRQx flag

Are both interrupt sources
of shared vector address used?

IRQx flag value remains 1

Jump to interrupt start address

YES

NO

Figure 7-1. Interrupt Execution Flowchart

INTERRUPTS KS57C2302/C2304/P2304 MICROCONTROLLER

7-4

@

@

IRQB

IRQ0

IRQ1

IRQT0

IRQW

IRQ2

IMOD1 IMOD0

INTB

INT0

INT1

INTT0

INTW

POWER-DOWN
MODE

RELEASE

IME IPR

IS1 IS0
INTERRUPT CONTROL

VECTOR INTERRUPT
GENERATOR

= NOISE FILTERING CIRCUIT
@ = EDGE DETECTION CIRCUIT

SELECTOR

IMOD2

INT2

KS0–KS3

IET0 IE1 IE0 IEBIEWIE2

Figure 7-2. Interrupt Control Circuit Diagram

KS57C2302/C2304/P2304 MICROCONTROLLER INTERRUPTS

7-5

MULTIPLE INTERRUPTS

The interrupt controller can service multiple interrupts in two ways: as two-level interrupts, where either all
interrupt requests or only those of highest priority are serviced, or as multi-level interrupts, when the interrupt
service routine for a lower-priority request is accepted during the execution of a higher priority routine.

Two-Level Interrupt Handling

Two-level interrupt handling is the standard method for processing multiple interrupts. When the IS1 and IS0 bits
of the PSW (FB0H.3 and FB0H.2, respectively) are both logic zero, program execution mode is normal and all
interrupt requests are serviced (see Figure 7-3).

Whenever an interrupt request is accepted, IS1 and IS0 are incremented by one, and the values are stored in the
stack along with the other PSW bits. After the interrupt routine has been serviced, the modified IS1 and IS0
values are automatically restored from the stack by an IRET instruction.

IS0 and IS1 can be manipulated directly by 1-bit write instructions, regardless of the current value of the enable
memory bank flag (EMB). Before you modify an interrupt service flag, however, you must first disable interrupt
processing with a DI instruction.

When IS1 = "0" and IS0 = "1", all interrupt service routines are inhibited except for the highest priority interrupt
currently defined by the interrupt priority register (IPR).

INT DISABLE

SET IPR

INT ENABLE

LOW OR
HIGH LEVEL
INTERRUPT

GENERATED

NORMAL PROGRAM
PROCESSING
(STATUS 0)

HIGH-LEVEL
INTERRUPT
GENERATED

HIGH OR LOW LEVEL
INTERRUPT PROCESSING

(STATUS 1)
HIGH LEVEL INTERRUPT

PROCESSING
(STATUS 2)

Figure 7-3. Two-Level Interrupt Handling

INTERRUPTS KS57C2302/C2304/P2304 MICROCONTROLLER

7-6

Multi-Level Interrupt Handling

With multi-level interrupt handling, a lower-priority interrupt request can be executed by manipulating the
interrupt status flags, IS0 and IS1 while a high-priority interrupt is being serviced (see Table 7-2).

When an interrupt is requested during normal program execution, interrupt status flags IS0 and IS1 are set to "1"
and "0", respectively. This setting allows only highest-priority interrupts to be serviced. When a high-priority
request is accepted, both interrupt status flags are then cleared to "0" by software so that a request of any priority
level can be serviced. In this way, the high- and low-priority requests can be serviced in parallel (see Figure 7-4).

Table 7-2. IS1 and IS0 Bit Manipulation for Multi-Level Interrupt Handling

Process Status Before INT Effect of ISx Bit Setting After INT ACK

IS1 IS0 IS1 IS0

0 0 0 All interrupt requests are serviced. 0 1

1 0 1 Only high-priority interrupts as determined by the
current settings in the IPR register are serviced.

1 0

2 1 0 No additional interrupt requests will be serviced. – –

– 1 1 Value undefined – –

INT DISABLE

SET IPR

INT ENABLE

LOW OR
HIGH LEVEL
INTERRUPT

GENERATED

NORMAL PROGRAM
PROCESSING
(STATUS 0)

LOW OR HIGH
LEVEL

INTERRUPT
GENERATED

SINGLE
INTERRUPT

2-LEVEL
INTERRUPT

STATUS 1

STATUS 1

STATUS 0

STATUS 0

INT ENABLE

MODIFY STATUS

INT DISABLE

HIGH-LEVEL
INTERRUPT
GENERATED

STATUS 2

3-LEVEL
INTERRUPT

Figure 7-4. Multi-Level Interrupt Handling

KS57C2302/C2304/P2304 MICROCONTROLLER INTERRUPTS

7-7

INTERRUPT PRIORITY REGISTER (IPR)

The 4-bit interrupt priority register (IPR) is used to control multi-level interrupt handling. Its reset value is logic
zero. Before the IPR can be modified by 4-bit write instructions, all interrupts must first be disabled by a DI
instruction.

FB2H IME IPR.2 IPR.1 IPR.0

By manipulating the IPR settings, you can choose to process all interrupt requests with the same priority level, or
you can select one type of interrupt for high-priority processing. A low-priority interrupt can itself be interrupted by
a high-priority interrupt, but not by another low-priority interrupt. A high-priority interrupt cannot be interrupted by
any other interrupt source.

Table 7-3. Standard Interrupt Priorities

The MSB of the IPR, the interrupt master enable flag (IME), enables and disables all interrupt processing. Even if
an interrupt request flag and its corresponding enable flag are set, a service routine cannot be executed until the
IME flag is set to logic one. The IME flag (mapped FB2H.3) can be directly manipulated by EI and DI instructions,
regardless of the current enable memory bank (EMB) value.

Table 7-4. Interrupt Priority Register Settings

NOTE: During normal interrupt processing, interrupts are processed in the order in which they occur. If two or more
interrupt requests are received simultaneously, the priority level is determined according to the standard interrupt
priorities in Table 7-3 (the default priority assigned by hardware when the lower three IPR bits = "0"). In this case,
the higher-priority interrupt request is serviced and the other interrupt is inhibited. Then, when the high-priority
interrupt is returned from its service routine by an IRET instruction, the inhibited service routine is started.

Interrupt Default Priority

INTB 1

INT0 2

INT1 3

INTT0 4

IPR.2 IPR.1 IPR.0 Result of IPR Bit Setting

0 0 0 Normal interrupt handling according to default priority settings

0 0 1 Process INTB interrupt at highest priority

0 1 0 Process INT0 interrupt at highest priority

0 1 1 Process INT1 interrupt at highest priority

1 0 0 Reserved

1 0 1 Process INTT0 interrupt at highest priority

INTERRUPTS KS57C2302/C2304/P2304 MICROCONTROLLER

7-8

++ PROGRAMMING TIP — Setting the INT Interrupt Priority

The following instruction sequence sets the INT1 interrupt to high priority:

BITS EMB
SMB 15
DI ; IPR.3 (IME) ← 0
LD A,#3H
LD IPR,A
EI ; IPR.3 (IME) ← 1

EXTERNAL INTERRUPT 0 AND 1 MODE REGISTERS (IMOD0 and IMOD1)

The following components are used to process external interrupts at the INT0 and INT1 pins:

— Noise filtering circuit for INT0

— Edge detection circuit

— Two mode registers, IMOD0 and IMOD1

The mode registers are used to control the triggering edge of the input signal. IMOD0 and IMOD1 settings let you
choose either the rising or falling edge of the incoming signal as the interrupt request trigger. Since INT2 is a
quasi-interrupt, the interrupt request flag (IRQ2) must be cleared by software.

FB4H IMOD0.3 "0" IMOD0.1 IMOD0.0

FB5H "0" "0" "0" IMOD1.0

IMOD0 and IMOD1 are addressable by 4-bit write instructions. RESET clears all IMOD values to logic zero,
selecting rising edges as the trigger for incoming interrupt requests.

Table 7-5. IMOD0, 1 and 2 Register Organization

IMOD0 IMOD0.3 0 IMOD0.1 IMOD0.0 Effect of IMOD0 Settings

0 Select CPU clock for sampling

1 Select fxx/64 sampling clock

0 0 Rising edge detection

0 1 Falling edge detection

1 0 Both rising and falling edge detection

1 1 IRQ0 flag cannot be set to "1"

IMOD1 0 0 0 IMOD1.0 Effect of IMOD1 Settings

0 Rising edge detection

1 Falling edge detection

KS57C2302/C2304/P2304 MICROCONTROLLER INTERRUPTS

7-9

EXTERNAL INTERRUPT 0 AND 1 MODE REGISTERS (Continued)

When a sampling clock rate of fxx/64 is used for INT0, an interrupt request flag must be cleared before 16 ma-
chine cycles have elapsed. Since the INT0 pin has a clock-driven noise filtering circuit built into it, please take the
following precautions when you use it:

— To trigger an interrupt, the input signal width at INT0 must be at least two times wider than the pulse width of
the clock selected by IMOD0.

INT0

CPU Clock fxx/64

INT1

NOISE FILTER EDGE IRQ0

IMOD0 IMOD1

CLOCK
SELECTOR

P1.1

P1.0

EDGE

IRQ1

Figure 7-5. Circuit Diagram for INT0 and INT1 Pins

When modifying the IMOD registers, it is possible to accidentally set an interrupt request flag. To avoid unwanted
interrupts, take these precautions when writing your programs:

1. Disable all interrupts with a DI instruction.

2. Modify the IMOD register.

3. Clear all relevant interrupt request flags.

4. Enable the interrupt by setting the appropriate IEx flag.

5. Enable all interrupts with an EI instructions.

INTERRUPTS KS57C2302/C2304/P2304 MICROCONTROLLER

7-10

EXTERNAL INTERRUPT 2 MODE REGISTER (IMOD2)

The mode register for external interrupt 2 at the KS0–KS3 pins, IMOD2, is addressable only by 4-bit write
instructions. RESET clears all IMOD2 bits to logic zero.

FB6H "0" "0" IMOD2.1 IMOD2.0

If a rising or falling edge is detected at any one of the selected KS pin by the IMOD2 register, the IRQ2 flag is set
to logic one and a release signal for power-down mode is generated.

Table 7-6. IMOD2 Register Bit Settings

IMOD2 0 0 IMOD2.1 IMOD2.0 Effect of IMOD2 Settings

0 0 Select rising edge at INT2 pin

0 1 Reserved

1 0 Select falling edge at KS2–KS3

1 1 Select falling edge at KS0–KS3

KS57C2302/C2304/P2304 MICROCONTROLLER INTERRUPTS

7-11

IRQ2

Falling
Edge

Detection
Circuit

Selector

Rising Edge
Detection Circuit

IMOD2

INT2

P6.3/KS3

P6.2/KS2

P6.1/KS1

P6.0/KS0

Figure 7-6. Circuit Diagram for INT2 and KS0–KS3 Pins

INTERRUPTS KS57C2302/C2304/P2304 MICROCONTROLLER

7-12

INTERRUPT FLAGS

There are three types of interrupt flags: interrupt request and interrupt enable flags that correspond to each
interrupt, the interrupt master enable flag, which enables or disables all interrupt processing.

Interrupt Master Enable Flag (IME)

The interrupt master enable flag, IME, enables or disables all interrupt processing. Therefore, even when an
IRQx flag is set and its corresponding IEx flag is enabled, the interrupt service routine is not executed until the
IME flag is set to logic one.

The IME flag is located in the IPR register (IPR.3). It can be directly be manipulated by EI and DI instructions,
regardless of the current value of the enable memory bank flag (EMB).

FB2H IME IPR.2 IPR.1 IPR.0 Effect of Bit Settings

0 Inhibit all interrupts

1 Allow all interrupts

Interrupt Enable Flags (IEx)

IEx flags, when set to logical one, enable specific interrupt requests to be serviced. When the interrupt request
flag is set to logical one, an interrupt will not be serviced until its corresponding IEx flag is also enabled.

Interrupt enable flags can be read, written, or tested directly by 1-bit instructions. IEx flags can be addressed
directly at their specific RAM addresses, despite the current value of the enable memory bank (EMB) flag.

Table 7-7. Interrupt Enable and Interrupt Request Flag Addresses

NOTES:
1. IEx refers generally to all interrupt enable flags.
2. IRQx refers generally to all interrupt request flags.
3. IEx = 0 is interrupt disable mode.
4. IEx = 1 is interrupt enable mode.

Address Bit 3 Bit 2 Bit 1 Bit 0

FB8H 0 0 IEB IRQB

FBAH 0 0 IEW IRQW

FBCH 0 0 IET0 IRQT0

FBEH IE1 IRQ1 IE0 IRQ0

FBFH 0 0 IE2 IRQ2

KS57C2302/C2304/P2304 MICROCONTROLLER INTERRUPTS

7-13

Interrupt Request Flags (IRQx)

Interrupt request flags are read/write addressable by 1-bit or 4-bit instructions. IRQx flags can be addressed
directly at their specific RAM addresses, regardless of the current value of the enable memory bank (EMB) flag.

When a specific IRQx flag is set to logic one, the corresponding interrupt request is generated. The flag is then
automatically cleared to logic zero when the interrupt has been serviced. Exceptions are the watch timer interrupt
request flags, IRQW, and the external interrupt 2 flag IRQ2, which must be cleared by software after the interrupt
service routine has executed. IRQx flags are also used to execute interrupt requests from software. In summary,
follow these guidelines for using IRQx flags:

1. IRQx is set to request an interrupt when an interrupt meets the set condition for interrupt generation.

2. IRQx is set to "1" by hardware and then cleared by hardware when the interrupt has been serviced (with the
exception of IRQW and IRQ2).

3. When IRQx is set to "1" by software, an interrupt is generated.

Table 7-8. Interrupt Request Flag Conditions and Priorities

Interrupt
Source

Internal /
External

Pre-condition for IRQx Flag Setting Interrupt
Priority

IRQ Flag
Name

INTB I Reference time interval signal from basic
timer

1 IRQB

INT0 E Rising or falling edge detected at INT0 pin 2 IRQ0

INT1 E Rising or falling edge detected at INT1 pin 3 IRQ1

INTT0 I Signals for TCNT0 and TREF0 registers
match

4 IRQT0

INT2
(note) E Rising edge detected at INT2 – IRQ2

INTW I Time interval of 0.5 secs or 3.19 msecs – IRQW

NOTE: The quasi-interrupt INT2 is only used for testing incoming signals.

INTERRUPTS KS57C2302/C2304/P2304 MICROCONTROLLER

7-14

NOTES

KS57C2302/C2304/P2304 MICROCONTROLLER POWER-DOWN

8-1

8 POWER-DOWN

OVERVIEW

The KS57C2302/C2304 microcontroller has two power-down modes to reduce power consumption: idle and stop.
Idle mode is initiated by the IDLE instruction and stop mode by the instruction STOP. (Several NOP instructions
must always follow an IDLE or STOP instruction in a program.) In idle mode, the CPU clock stops while
peripherals and the oscillation source continue to operate normally.

When RESET occurs during normal operation or during a power-down mode, a reset operation is initiated and the
CPU enters idle mode. When the standard oscillation stabilization time interval (31.3 ms at 4.19 MHz) has
elapsed, normal CPU operation resumes.

In main stop mode, main system clock oscillation is halted (assuming main clock is selected as system clock and
it is currently operating), and peripheral hardware components are powered-down. In sub stop mode, (assuming
sub clock is selected) sub system clock oscillation is halted by setting SCMOD.2 to “1”. The effect of stop mode
on specific peripheral hardware components — CPU, basic timer, timer/ counter 0, watch timer, and LCD
controller — and on external interrupt requests, is detailed in Table 8-1.

NOTE

Do not use stop mode if you are using an external clock source because Xin input must be restricted
internally to VSS to reduce current leakage.

Idle or main stop modes are terminated either by a RESET, or by an interrupt which is enabled by the
corresponding interrupt enable flag, IEx. When power-down mode is terminated by RESET, a normal reset
operation is executed. Assuming that both the interrupt enable flag and the interrupt request flag are set to "1",
power-down mode is released immediately upon entering power-down mode. Sub stop mode can be terminated
by RESET only.

When an interrupt is used to release power-down mode, the operation differs depending on the value of the
interrupt master enable flag (IME):

— If the IME flag = "0", program execution starts immediately after the instruction issuing a request to enter
power-down mode is executed. The interrupt request flag remains set to logical one.

— If the IME flag = "1", two instructions are executed after the power-down mode release and the vectored
interrupt is then initiated. However, when the release signal is caused by INT2 or INTW, the operation is
identical to the IME = "0" condition. Assuming that both interrupt enable flag and interrupt request flag are set
to "1", the release signal is generated when power-down mode is entered.

POWER-DOWN KS57C2302/C2304/P2304 MICROCONTROLLER

8-2

Table 8-1. Hardware Operation During Power-Down Modes

Mode Main Stop Sub Stop Main/Sub Stop Idle

System clock Main clock (fx) Sub clock (fxt) Main clock (fx) (1) Main (fx) or sub clock
(fxt)

Instruction STOP Setting SCMOD.2 to
“1”

STOP IDLE

Clock oscillator Main clock oscillation
stops

Sub clock oscillation
stops

Main clock oscillation
stops

Only CPU clock
stops. (2)

Basic timer Basic timer stops. Basic timer stops. Basic timer stops. Basic timer operates.

Timer/counter 0 Operates only if
TCL0 is selected as
counter clock.

Operates only if
TCL0 is selected as
counter clock.

Operates only if
TCL0 is selected as
counter clock.

Timer/counter 0
operates.

Watch timer Operates only if sub
clock (fxt) is selected
as counter clock.

Watch timer stops. Watch timer stops. Watch timer
operates.

LCD controller Operates only if sub
clock (fxt) is selected
as LCD clock,
LCDCK.

LCD controller stops. LCD controller stops. LCD controller
operates.

External
interrupts

INT1 and INT2 are
acknowledged; INT0
is not serviced.

INT0, INT1, and INT2
is not serviced.

INT1 and INT2 are
acknowledged; INT0
is not serviced.

INT1 and INT2 are
acknowledged; INT0
is not serviced.

CPU All CPU operations are disabled.

Mode release
signal

Interrupt request
signals (except INT0)
pre-enabled by IEx or
RESET input.

Only RESET input Interrupt request signals (except INT0) pre-
enabled by IEx or RESET input.

NOTE: 1. Sub clock stops by setting SCMOD.2 to “1”.
2. Main and sub clock oscillation continues.

KS57C2302/C2304/P2304 MICROCONTROLLER POWER-DOWN

8-3

IDLE MODE TIMING DIAGRAMS

CLOCK
SIGNAL

IDLE
INSTRUCTION

OSCILLATION
STABILIZATION

(31.3 ms / 4.19 MHz)

NORMAL MODE IDLE MODE NORMAL MODE

NORMAL OSCILLATION

RESET

Figure 8-1. Timing When Idle Mode is Released by RESET

NORMAL MODE IDLE MODE NORMAL MODE

NORMAL OSCILLATION

MODE
RELEASE
SIGNAL

IDLE
INSTRUCTION

CLOCK
SIGNAL

INTERRUPT ACKNOWLEDGE (IME = 1)

Figure 8-2. Timing When Idle Mode is Released by an Interrupt

POWER-DOWN KS57C2302/C2304/P2304 MICROCONTROLLER

8-4

STOP MODE TIMING DIAGRAMS

STOP
INSTRUCTION

OSCILLATION
STABILIZATION

(31.3 ms / 4.19 MHz)

RESET

CLOCK
SIGNAL

NORMAL MODE IDLE MODE NORMAL MODE

OSCILLATION RESUMES

STOP MODE

OSCILLATION
STOPS

Figure 8-3. Timing When Stop Mode is Released by RESET

OSCILLATION
STABILIZATION
(BMOD SETTING)

NORMAL MODE IDLE MODE NORMAL MODE

OSCILLATION RESUMES

STOP MODE

OSCILLATION
STOPS

MODE
RELEASE
SIGNAL

STOP
INSTRUCTION

CLOCK
SIGNAL

INT ACK (IME = 1)

Figure 8-4. Timing When Main Stop or Main/Sub Stop Mode is Release by an Interrupt

KS57C2302/C2304/P2304 MICROCONTROLLER POWER-DOWN

8-5

++ PROGRAMMING TIP — Reducing Power Consumption for Key Input Interrupt Processing

The following code shows real-time clock and interrupt processing for key inputs to reduce power consumption. In
this example, the system clock source is switched from the main system clock to a subsystem clock and the LCD
display is turned on:

KEYCLK DI
CALL MA2SUB ; Main system clock → subsystem clock switch subroutine
SMB 15
LD EA,#00H
LD P2,EA ; All key strobe outputs to low level
LD A,#3H
LD IMOD2,A ; Select KS0–KS3 enable
SMB 0
BITR IRQW
BITR IRQ2
BITS IEW
BITS IE2

CLKS1 CALL WATDIS ; Execute clock and display changing subroutine
BTSTZ IRQ2
JR CIDLE
CALL SUB2MA ; Subsystem clock → main system clock switch

subroutine
EI
RET

CIDLE IDLE ; Engage idle mode
NOP
NOP
NOP
JPS CLKS1

NOTE

You must execute three NOP instructions after IDLE and STOP instructions, to avoid flowing
of leakage current due to the floating state in the internal bus.

POWER-DOWN KS57C2302/C2304/P2304 MICROCONTROLLER

8-6

PORT PIN CONFIGURATION FOR POWER-DOWN

The following method describes how to configure I/O port pins to reduce power consumption during power-down
modes (stop, idle):

Condition 1: If the microcontroller is not configured to an external device:

1. Connect unused port pins according to the information in Table 8-2.

2. Disable pull-up resistors for input pins configured to VDD or VSS levels in order to check the current input
option. Reason: If the input level of a port pin is set to VSS when a pull-up resistor is enabled, it will draw an

unnecessarily large current.

Condition 2: If the microcontroller is configured to an external device and the external device's VDD source

is turned off in power-down mode.

1. Connect unused port pins according to the information in Table 8-2.

2. Disable pull-up resistors for input pins configured to VDD or VSS levels in order to check the current input
option. Reason: If the input level of a port pin is set to VSS when a pull-up resistor is enabled, it will draw an

unnecessarily large current.

3. Disable the pull-up resistors of input pins connected to the external device by making the necessary
modifications to the PUMOD register.

4. Configure the output pins that are connected to the external device to low level. Reason: When the external
device's VDD source is turned off, and if the microcontroller's output pins are set to high level, VDD – 0.7 V is
supplied to the VDD of the external device through its input pin. This causes the device to operate at the level
VDD – 0.7 V. In this case, total current consumption would not be reduced.

5. Determine the correct output pin state necessary to block current pass in according with the external
transistors (PNP, NPN).

KS57C2302/C2304/P2304 MICROCONTROLLER POWER-DOWN

8-7

RECOMMENDED CONNECTIONS FOR UNUSED PINS

To reduce overall power consumption, please configure unused pins according to the guidelines described in
Table 8-2.

Table 8-2. Unused Pin Connections for Reducing Power Consumption

Pin/Share Pin Names Recommended Connection

P1.0/INT0
P1.1/INT1
P1.2/INT2
P1.3/TCL0

Connect to VDD
 (1)

P2.0/TCLO0
P2.1
P2.2/CLO
P2.3/BUZ

Input mode: Connect to VDD

Output mode: No connection

P3.2–P3.3
P3.1/LCDSY
P3.0/LCDCK

Input mode: Connect to VDD

Output mode: No connection

P8.0/SEG24–P8.7/SEG31 No connection (2)

SEG0–SEG23
COM0–COM3

No connection

VLC0–VLC2 No connection

XTin Connect XTin to VSS and set SCMOD.2 to “1”

XTout No connection

TEST Connect to VSS

NOTES:
1. Digital mode at P1.0 and P1.1
2. Used as segment

POWER-DOWN KS57C2302/C2304/P2304 MICROCONTROLLER

8-8

NOTES

KS57C2302/ C2304/P2304 MICROCONTROLLER RESET

9-1

9 RESET

OVERVIEW

When a RESET signal is input during normal operation or power-down mode, a hardware reset operation is
initiated and the CPU enters idle mode. Then, when the standard oscillation stabilization interval of 31.3 ms at
4.19 MHz has elapsed, normal system operation resumes.

Regardless of when the RESET occurs — during normal operating mode or during a power-down mode — most
hardware register values are set to the reset values described in Table 9-1. The current status of several register
values is, however, always retained when a RESET occurs during idle or stop mode; If a RESET occurs during
normal operating mode, their values are undefined. Current values that are retained in this case are as follows:

— Carry flag

— Data memory values

— General-purpose registers E, A, L, H, X, W, Z, and Y

 RESET

INPUT

NORMAL MODE
OR

POWER-DOWN
MODE

OSCILLATION
STABILIZATION

(31.3 ms / 4.19 MHz)

IDLE MODE OPERATING MODE

 RESET OPERATION

Figure 9-1. Timing for Oscillation Stabilization After RESET

HARDWARE REGISTER VALUES AFTER RESET

Table 9-1 gives you detailed information about hardware register values after a RESET occurs during power-down
mode or during normal operation.

RESET KS57C2302/ C2304/P2304 MICROCONTROLLER

9-2

Table 9-1. Hardware Register Values After RESET

Hardware Component
or Subcomponent

If RESET Occurs During
Power-Down Mode

If RESET Occurs During
Normal Operation

Program counter (PC) Lower four bits of address 0000H
are transferred to PC11–8, and
the contents of 0001H to PC7–0.

Lower four bits of address 0000H
are transferred to PC11–8, and
the contents of 0001H to PC7–0.

Program Status Word (PSW):

Carry flag (C) Retained Undefined

Skip flag (SC0–SC2) 0 0

Interrupt status flags (IS0, IS1) 0 0

Bank enable flags (EMB, ERB) Bit 6 of address 0000H in
program memory is transferred to
the ERB flag, and bit 7 of the
address to the EMB flag.

Bit 6 of address 0000H in
program memory is transferred to
the ERB flag, and bit 7 of the
address to the EMB flag.

Stack pointer (SP) Undefined Undefined

Data Memory (RAM):

Working registers E, A, L, H, X, W, Z, Y Values retained Undefined

General-purpose registers Values retained Undefined

Bank selection registers (SMB, SRB) 0, 0 0, 0

BSC register (BSC0–BSC3) 0 0

Clocks:

Power control register (PCON) 0 0

Clock output mode register (CLMOD) 0 0

System clock control reg (SCMOD) 0 0

Interrupts:

Interrupt request flags (IRQx) 0 0

Interrupt enable flags (IEx) 0 0

Interrupt priority flag (IPR) 0 0

Interrupt master enable flag (IME) 0 0

INT0 mode register (IMOD0) 0 0

INT1 mode register (IMOD1) 0 0

INT2 mode register (IMOD2) 0 0

KS57C2302/ C2304/P2304 MICROCONTROLLER RESET

9-3

Table 9-1. Hardware Register Values After RESET (Continued)

Hardware Component
or Subcomponent

If RESET Occurs During
Power-Down Mode

If RESET Occurs During
Normal Operation

I/O Ports:

Output buffers Off Off

Output latches 0 0

Port mode flags (PM) 0 0

Pull-up resistor mode reg (PUMOD) 0 0

Basic Timer:

Count register (BCNT) Undefined Undefined

Mode register (BMOD) 0 0

Timer/Counter 0:

Count registers (TCNT0) 0 0

Reference registers (TREF0) FFH FFH

Mode registers (TMOD0) 0 0

Output enable flags (TOE0) 0 0

Watchdog Timer:

WDT mode register (WDMOD) A5H A5H

WDT clear flag (WDTCF) 0 0

Watch Timer:

Watch timer mode register (WMOD) 0 0

LCD Driver/Controller:

LCD mode register (LMOD) 0 0

LCD control register (LCON) 0 0

Display data memory Values retained Undefined

Output buffers Off Off

RESET KS57C2302/ C2304/P2304 MICROCONTROLLER

9-4

NOTES

KS57C2302/C2304/P2304 MICROCONTROLLER I/O PORTS

10-1

10 I/O PORTS

OVERVIEW

The KS57C2302/C2304 has 5 ports. There are total of 4 input pins, 8 output pins and 12 configurable I/O pins,
for a maximum number of 24 pins.

Pin addresses for all ports are mapped to bank 15 of the RAM. The contents of I/O port pin latches can be read,
written, or tested at the corresponding address using bit manipulation instructions.

Port Mode Flags

Port mode flags (PM) are used to configure I/O ports to input or output mode by setting or clearing the
corresponding I/O buffer.

Pull-Up Resistor Mode Register (PUMOD)

The pull-up mode registers (PUMOD) are used to assign internal pull-up resistors by software to specific ports.
When a configurable I/O port pin is used as an output pin, its assigned pull-up resistor is automatically disabled,
even though the pin's pull-up is enabled by a corresponding PUMOD bit setting.

I/O PORTS KS57C2302/C2304/P2304 MICROCONTROLLER

10-2

Table 10-1. I/O Port Overview

Port I/O Pins Pin Names Address Function Description

1 I 4 P1.0–P1.3 FF1H 4-bit input port.
1-bit and 4-bit read and test is possible.
4-bit pull-up resistors are software assignable.

2 I/O 4 P2.0–P2.3 FF2H 4-bit I/O port.
1-bit and 4-bit read/write and test is possible.
4-bit pull-up resistors are software assignable.

3 I/O 4 P3.0–P3.3 FF3H 4-bit I/O port. Port 3 pins are individually
software configurable as input or output. 1-,
and 4-bit read/write/test is possible. 4-bit pull-
up resistors are software assignable.

6 I/O 4 P6.0–P6.3 FF6H 4-bit I/O port. Port 6 pins are individually
software configurable as input or output. 1-,
and 4-bit read/write/test is possible. 4-bit pull-
up resistors are software assignable.

8 O 8 P8.0–P8.7 1F8H–1FFH Output port for 1-bit data (for use as CMOS
driver only)

Table 10-2. Port Pin Status During Instruction Execution

Instruction Type Example Input Mode Status Output Mode Status

1-bit test
1-bit input
4-bit input

BTST
LDB
LD

P0.1
C,P1.3
A,P1

Input or test data at each pin Input or test data at output latch

1-bit output BITR P2.3 Output latch contents undefined Output pin status is modified

4-bit output LD P2,A Transfer accumulator data to the
output latch

Transfer accumulator data to the
output pin

KS57C2302/C2304/P2304 MICROCONTROLLER I/O PORTS

10-3

PORT MODE FLAGS (PM FLAGS)

Port mode flags (PM) are used to configure I/O ports to input or output mode by setting or clearing the
corresponding I/O buffer.

For convenient program reference, PM flags are organized into two groups — PMG1 and PMG2 as shown in
Table 10-3. They are addressable by 8-bit write instructions only.

When a PM flag is "0", the port is set to input mode; when it is "1", the port is enabled for output. RESET clears all
port mode flags to logical zero, automatically configuring the corresponding I/O ports to input mode.

Table 10-3. Port Mode Group Flags

PM Group ID Address Bit 3 Bit 2 Bit 1 Bit 0

PMG1 FE8H PM3.3 PM3.2 PM3.1 PM3.0

FE9H PM6.3 PM6.2 PM6.1 PM6.0

PMG2 FECH “0” PM2 “0” “0”

FEDH “0” “0” “0” “0”

++ PROGRAMMING TIP — Configuring I/O Ports to Input or Output

Configure ports 3 and 6 as an output port:

BITS EMB
SMB 15
LD EA,#0FFH
LD PMG1,EA ; P3 and P6 ← Output

PULL-UP RESISTOR MODE REGISTER (PUMOD)

The pull-up resistor mode register (PUMOD) is used to assign internal pull-up resistors by software to specific
ports. When a configurable I/O port pin is used as an output pin, its assigned pull-up resistor is automatically
disabled, even though the pin's pull-up is enabled by a corresponding PUMOD bit setting.

PUMOD is addressable by 8-bit write instructions only. RESET clears PUMOD register values to logic zero,
automatically disconnecting all software-assignable port pull-up resistors.

Table 10-4. Pull-Up Resistor Mode Register (PUMOD) Organization

PUMOD ID Address Bit 3 Bit 2 Bit 1 Bit 0

PUMOD FDCH PUR3 PUR2 PUR1 “0”

FDDH “0” PUR6 “0” “0”

NOTE: When bit = "1", a pull-up resistor is assigned to the corresponding I/O port: PUR3 for port 3, PUR2 for port 2,
and so on.

I/O PORTS KS57C2302/C2304/P2304 MICROCONTROLLER

10-4

++ PROGRAMMING TIP — Enabling and Disabling I/O Port Pull-Up Resistors

P2 and P3 are enabled to have pull-up resistors.

BITS EMB
SMB 15
LD EA,#0CH
LD PUMOD,EA ; Enable P2 and P3 to have pull-up resistors

PIN ADDRESSING FOR OUTPUT PORT 8

The addresses for the port 8 1-bit output pin buffers are located in bank 1 of data memory instead of bank 15. To
address port 8 output pins, use the settings EMB = 1 and SMB = 1. The LCD mode register, LMOD is used to
control whether the pin address is used for LCD data output or for normal data output:

Table 10-5. LMOD.7 and LMOD.6 Setting for Port 8 Output Control

LMOD.7 LMOD.6 LCD Output Segments 1-Bit Output Pins
0 0 Seg 24–31 –

0 1 Seg 24–27 P8.4–P8.7 (Seg 28–31)

1 0 Seg 28–31 P8.0–P8.3 (Seg 24–27)

1 1 – P8.0–P8.7 (Seg 24–31)

Each address in RAM bank 1 corresponds to a 4-bit register location. The LSB (bit 0) of the register location is
used as the port buffer for either LCD segment output or normal 1-bit data output. Locations that are unused for
LCD or port I/O can be used as normal data memory. After a RESET, the values contained in the port 8 output
buffer are left undetermined.

Table 10-6 shows port 8 pin addresses and also the corresponding LCD segment names if the pins are used to
output LCD segment data. Pin addresses that are not used for LCD segment output can be used for normal 1-bit
output.

Table 10-6. Port 8 Pin Addresses and LCD Segment Correspondence

Port 8 Pin Number RAM Address LCD Segment
P8.0 1F8H SEG24

P8.1 1F9H SEG25

P8.2 1FAH SEG26

P8.3 1FBH SEG27

P8.4 1FCH SEG28

P8.5 1FDH SEG29

P8.6 1FEH SEG30

P8.7 1FFH SEG31

KS57C2302/C2304/P2304 MICROCONTROLLER I/O PORTS

10-5

PORT 1 CIRCUIT DIAGRAM

VDD

PUMOD.1

INT0

P1.1

P1.2

P1.3

P1.0
N/R

 Circuit

IMOD0

INT1 INT2 TCL0

INT0

CPU clock fxx/64

INT1

NOISE FILTER EDGE IRQ0

IMOD0 IMOD1

CLOCK
SELECTOR

P1.1

EDGE

IRQ1

P1.0

Figure 10-1. Input Port 1 Circuit Diagram

I/O PORTS KS57C2302/C2304/P2304 MICROCONTROLLER

10-6

PORT 2 CIRCUIT DIAGRAM

 8

1, 4

1, 4

VDD VDDVDD VDD

M

U

X

P2.0

P2.1

P2.2

P2.3

PM2

OUTPUT
LATCH

PUMOD.2

When a port pin acts as an output, its pull-up resistor is automatically
disabled, even though the port's pull-up resistor is enabled by bit settings
to the pull-up resistor mode register (PUMOD).

NOTE:

Figure 10-2. Port 2 Circuit Diagram

KS57C2302/C2304/P2304 MICROCONTROLLER I/O PORTS

10-7

PORTS 3 AND 6 CIRCUIT DIAGRAM

VDD

1, 4

1, 4

x = port number (3, 6)

When a port pin acts as an output, its pull-up resistor is automatically
disabled, even though the port's pull-up resistor is enabled by bit settings
to the pull-up resistor mode register (PUMOD).

NOTE:

PUMOD.x

M

U

X

PMx.2

PMx.3

PMx.1

PMx.0

Px.0

Px.1

Px.2

Px.3

OUTPUT
LATCH

Figure 10-3. Ports 3 and 6 Circuit Diagram

I/O PORTS KS57C2302/C2304/P2304 MICROCONTROLLER

10-8

NOTES

KS57C2302/C2304/P2304 MICROCONTROLLER TIMERS and TIMER/COUNTERS

11-1

11 TIMERS and TIMER/COUNTERS

OVERVIEW

The KS57C2302/C2304 microcontroller has three timer and timer/counter modules:

— 8-bit basic timer (BT)

— 8-bit timer/counter (TC0)

— Watch timer (WT)

The 8-bit basic timer (BT) is the microcontroller's main interval timer. It generates an interrupt request at a fixed
time interval when the appropriate modification is made to its mode register. The basic timer also functions as
‘watchdog’ timer and is used to determine clock oscillation stabilization time when stop mode is released by an
interrupt and after a RESET.

The 8-bit timer/counter (TC0) is programmable timer/counter that is used primarily for event counting and for
clock frequency modification and output.

The watch timer (WT) module consists of an 8-bit watch timer mode register, a clock selector, and a frequency
divider circuit. Watch timer functions include real-time and watch-time measurement, main and subsystem clock
interval timing, buzzer output generation. It also generates a clock signal for the LCD controller.

TIMERS and TIMER/COUNTERS KS57C2302/C2304/P2304 MICROCONTROLLER

11-2

BASIC TIMER (BT)

OVERVIEW

The 8-bit basic timer (BT) has five functional components:

— Clock selector logic

— 4-bit mode register (BMOD)

— 8-bit counter register (BCNT)

— 8-bit watchdog timer mode register (WDMOD)

— Watchdog timer counter clear flag (WDTCF)

The basic timer generates interrupt requests at precise intervals, based on the frequency of the system clock.
Basic timer’s counter register, BCNT, outputs timer pulses to the watchdog timer’s counter register, WDTCNT
when an overflow occurs in BCNT. You can use the basic timer as a "watchdog" timer for monitoring system
events or use BT output to stabilize clock oscillation when stop mode is released by an interrupt and following
RESET. Bit settings in the basic timer mode register BMOD turns the BT on and off, selects the input clock
frequency, and controls interrupt or stabilization intervals.

Interval Timer Function

The measurement of elapsed time intervals is the basic timer's primary function. The standard interval is 256 BT
clock pulses.

To restart the basic timer, set bit 3 of the mode register BMOD to logic one. The input clock frequency and the
interrupt and stabilization interval are selected by loading the appropriate bit values to BMOD.2–BMOD.0.

The 8-bit counter register, BCNT, is incremented each time a clock signal is detected that corresponds to the
frequency selected by BMOD. BCNT continues incrementing as it counts BT clocks until an overflow occurs. An
overflow causes the BT interrupt request flag (IRQB) to be set to logic one to signal that the designated time
interval has elapsed. An interrupt request is then generated, BCNT is cleared to logic zero, and counting
continues from 00H.

Oscillation Stabilization Interval Control

Bits 2–0 of the BMOD register are used to select the input clock frequency for the basic timer. This setting also
determines the time interval (also referred to as ‘wait time’) required to stabilize clock signal oscillation when
power-down mode is released by an interrupt. When a RESET signal is generated, the standard stabilization
interval for system clock oscillation following a RESET is 31.3 ms at 4.19 MHz.

Watchdog Timer Function

The basic timer can also be used as a “watchdog” timer to detect an inadvertent program loop, that is, system or
program operation error. For this purpose, instruction that clears the watchdog timer (BITS WDTCF) within a
given period should be executed at proper points in a program. If an instruction that clears the watchdog timer is
not done within the period and the watchdog timer overflows, reset signal is generated and system is restarted
with reset status. An operation of watchdog timer is as follows:

— Write some value (except #5AH) to Watchdog Timer Mode register, WDMOD.

— Each time BCNT overflows, an overflow signal is sent to the watchdog timer counter, WDCNT.

— If WDTCNT overflows, system reset will be generated.

KS57C2302/C2304/P2304 MICROCONTROLLER TIMERS and TIMER/COUNTERS

11-3

Table 11-1. Basic Timer Register Overview

Register
Name

Type Description Size RAM
Address

Addressing
Mode

Reset
Value

BMOD Control Controls the clock frequency
(mode) of the basic timer; also, the
oscillation stabilization interval after
power-down mode release or RESET

4-bit F85H 4-bit write-only;
BMOD.3: 1-bit

write-only

“0”

BCNT Counter Counts clock pulses matching the
BMOD frequency setting

8-bit F86H–F87H 8-bit read-
only

“u”
(note)

WDMOD Control Controls watchdog timer operation. 8-bit F98H–F99H 8-bit write-only A5H

WDTCF Control Clear the watchdog timer’s counter. 1-bit F9AH.3 1-bit write-only “0”

NOTE: “u” means that the value is undetermined after a RESET.

"Clear" Signal

Bits
Instruction

Clock
Selector BCNT IRQB

Interrupt
RequestOverflow

Cpu Clock Start Signal
(By Interrupts)

1-Bit R/W

Clock Input

Clear
IRQB

4

Clear
BCNTBMOD.3

BMOD.2

BMOD.1

BMOD.0
8

WDMOD

WDTCNT
Reset

Generation

8

WDTCF DELAY

Wait
RESET

Stop
Bits
Instruction

RESET

C

Clear

Overflow

1 pulse period=BT input clock 2 (1/2 duty)

3-Bit Counter

8

NOTE: WAIT means stabilization time
 after or Stabilization
 time after STOP mode release.

RESET

Bit5

(By RESET)

Figure 11-1. Basic Timer Circuit Diagram

TIMERS and TIMER/COUNTERS KS57C2302/C2304/P2304 MICROCONTROLLER

11-4

BASIC TIMER MODE REGISTER (BMOD)

The basic timer mode register, BMOD, is a 4-bit write-only register. Bit 3, the basic timer start control bit, is also
1-bit addressable. All BMOD values are set to logic zero following RESET and interrupt request signal generation
is set to the longest interval. (BT counter operation cannot be stopped.) BMOD settings have the following
effects:

— Restart the basic timer;

— Control the frequency of clock signal input to the basic timer;

— Determine time interval required for clock oscillation to stabilize following the release of stop mode by an
interrupt.

By loading different values into the BMOD register, you can dynamically modify the basic timer clock frequency
during program execution. Four BT frequencies, ranging from fxx/212 to fxx/25, are selectable. Since BMOD's
reset value is logic zero, the default clock frequency setting is fxx/212.

The most significant bit of the BMOD register, BMOD.3, is used to restart the basic timer. When BMOD.3 is set
to logic one (enabled) by a 1-bit write instruction, the contents of the BT counter register (BCNT) and the BT
interrupt request flag (IRQB) are both cleared to logic zero, and timer operation is restarted.

The combination of bit settings in the remaining three registers — BMOD.2, BMOD.1, and BMOD.0 —
determines the clock input frequency and oscillation stabilization interval.

Table 11-2. Basic Timer Mode Register (BMOD) Organization

BMOD.3 Basic Timer Restart Bit

1 Restart basic timer; clear IRQB, BCNT, and BMOD.3 to "0"

BMOD.2 BMOD.1 BMOD.0 Basic Timer Input Clock Interval Time

0 0 0 fxx/212 (1.02 kHz) 220/fxx (250 ms)

0 1 1 fxx/29 (8.18 kHz) 217/fxx (31.3 ms)

1 0 1 fxx/27 (32.7 kHz) 215/fxx (7.82 ms)

1 1 1 fxx/25 (131 kHz) 213/fxx (1.95 ms)

NOTES:
1. Clock frequencies and stabilization intervals assume a system oscillator clock frequency (fxx) of 4.19 MHz.
2. fxx = selected system clock frequency.
3. Oscillation stabilization time is the time required to stabilize clock signal oscillation after stop mode is released. The

data in the table column 'Oscillation Stabilization' can also be interpreted as "Interrupt Interval Time."
4. The standard stabilization time for system clock oscillation following a RESET is 31.3 ms at 4.19 MHz.

KS57C2302/C2304/P2304 MICROCONTROLLER TIMERS and TIMER/COUNTERS

11-5

BASIC TIMER COUNTER (BCNT)

BCNT is an 8-bit counter for the basic timer. It can be addressed by 8-bit read instructions.

RESET leaves the BCNT counter value undetermined. BCNT is automatically cleared to logic zero whenever the
BMOD register control bit (BMOD.3) is set to "1" to restart the basic timer. It is incremented each time a clock
pulse of the frequency determined by the current BMOD bit settings is detected.

When BCNT has incremented to hexadecimal 'FFH' (255 clock pulses), it is cleared to '00H' and an overflow is
generated. The overflow causes the interrupt request flag, IRQB, to be set to logic one. When the interrupt
request is generated, BCNT immediately resumes counting with incoming clock signal.

NOTE

Always execute a BCNT read operation twice to eliminate the possibility of reading unstable data while
the counter is incrementing. If, after two consecutive reads, the BCNT values match, you can select the
latter value as valid data. Until the results of the consecutive reads match, however, the read operation
must be repeated until the validation condition is met.

BASIC TIMER OPERATION SEQUENCE

The basic timer's sequence of operations may be summarized as follows:

1. Set counter buffer bit (BMOD.3) to logic one to restart the basic timer.

2. BCNT is then incremented by one per each clock pulse corresponding to BMOD selection.

3. BCNT overflows if BCNT = 255 (BCNT = FFH).

4. When an overflow occurs, the IRQB flag is set by hardware to logic one.

5. The interrupt request is generated.

6. BCNT is then cleared by hardware to logic zero.

7. Basic timer resumes counting clock pulses.

TIMERS and TIMER/COUNTERS KS57C2302/C2304/P2304 MICROCONTROLLER

11-6

++ PROGRAMMING TIP — Using the Basic Timer

1. To read the basic timer count register (BCNT):

BITS EMB
SMB 15

BCNTR LD EA,BCNT
LD YZ,EA
LD EA,BCNT
CPSE EA,YZ
JR BCNTR

2. When stop mode is released by an interrupt, set the oscillation stabilization interval to 31.3 ms:

BITS EMB
SMB 15
LD A,#0BH
LD BMOD,A ; Wait time is 31.3 ms
NOP
STOP ; Set stop power-down mode
NOP
NOP
NOP

NORMAL
OPERATING MODE STOP MODE IDLE MODE

(31.3 ms)

CPU
OPERATION

STOP
INSTRUCTION

STOP MODE IS
RELEASED BY

INTERRUPT

NORMAL
OPERATING MODE

3. To set the basic timer interrupt interval time to 1.95 ms (at 4.19 MHz):

BITS EMB
SMB 15
LD A,#0FH
LD BMOD,A
EI
BITS IEB ; Basic timer interrupt enable flag is set to "1"

4. Clear BCNT and the IRQB flag and restart the basic timer:

BITS EMB
SMB 15
BITS BMOD.3

KS57C2302/C2304/P2304 MICROCONTROLLER TIMERS and TIMER/COUNTERS

11-7

WATCHDOG TIMER MODE REGISTER (WDMOD)

The watchdog timer mode register, WDMOD, is a 8-bit write-only register located at RAM address F98H–F99H.
WDMOD register controls to enable or disable the watchdog function. WDMOD values are set to logic “A5H”
following RESET and this value enables the watchdog timer, and watchdog timer is set to the longest interval
because BT overflow signal is generated with the longest interval.

WDMOD Watchdog Timer Enable/Disable Control

5AH Disable watchdog timer function

Any other value Enable watchdog timer function

WATCHDOG TIMER COUNTER (WDCNT)

The watchdog timer counter, WDCNT, is a 3-bit counter. WDCNT is automatically cleared to logic zero, and
restarts whenever the WDTCF register control bit is set to “1”. RESET, stop, and wait signal clears the WDCNT to
logic zero also.

WDCNT increments each time a clock pulse of the overflow frequency determined by the current BMOD bit
setting is generated. When WDCNT has incremented to hexadecimal ‘07H’, it is cleared to ‘00H’ and an overflow
is generated. The overflow causes the system RESET. When the interrupt request is generated, BCNT
immediately resumes counting incoming clock signals.

WATCHDOG TIMER COUNTER CLEAR FLAG (WDTCF)

The watchdog timer counter clear flag, WDTCF, is a 1-bit write instruction. When WDTCF is set to one, it clears
the WDCNT to zero and restarts the WDCNT. WDTCF register bits 2–0 are always logic zero.

Table 11-3. Watchdog Timer Interval Time

BMOD BT Input Clock
(frequency)

WDCNT Input Clock
(frequency)

WDT Interval Time Main
Clock

Sub
Clock

x000b fxx/212 fxx/(212 × 28) 212 × 28 × 23/fxx 1.75–2
sec

224–256
sec

x011b fxx/29 fxx/(29 × 28) 29 × 28 × 23/fxx 218.7–250
ms

28–32
sec

x101b fxx/27 fxx/(27 × 28) 27 × 28 × 23/fxx 54.6–62.5
ms

7–8
sec

x111b fxx/25 fxx/(25 × 28) 25 × 28 × 23/fxx 13.6–15.6
ms

1.75–2
sec

NOTES:
1. Clock frequencies assume a system oscillator clock frequency (fxx) of: 4.19 MHz Main clock or 32.768 kHz Sub clock
2. fxx = system clock frequency.
3. If the WDMOD changes such as disable and enable, you must set WDTCF flag to “1” for starting WDCNT from zero

state.

TIMERS and TIMER/COUNTERS KS57C2302/C2304/P2304 MICROCONTROLLER

11-8

+ + PROGRAMMING TIP — Using the Watchdog Timer

RESET DI
BITS EMB
SMB 15
LD EA,#00H
LD SP,EA

•
•
•

LD A,#0DH ; WDCNT input clock is 7.82 ms
LD BMOD,A

•
•
•

MAIN BITS WDTCF ; Main routine operation period must be shorter than
; watchdog

• ; timer’s period
•
•

JP MAIN

KS57C2302/C2304/P2304 MICROCONTROLLER TIMERS and TIMER/COUNTERS

11-9

8-BIT TIMER/COUNTER 0 (TC0)

OVERVIEW

Timer/counter 0 (TC0) is used to count system 'events' by identifying the transition (high-to-low or low-to-high) of
incoming square wave signals. To indicate that an event has occurred, or that a specified time interval has
elapsed, TC0 generates an interrupt request. By counting signal transitions and comparing the current counter
value with the reference register value, TC0 can be used to measure specific time intervals.

TC0 has a reloadable counter that consists of two parts: an 8-bit reference register (TREF0) into which you write
the counter reference value, and an 8-bit counter register (TCNT0) whose value is automatically incremented by
counter logic.

An 8-bit mode register, TMOD0, is used to activate the timer/counter and to select the basic clock frequency to
be used for timer/counter operations. To dynamically modify the basic frequency, new values can be loaded into
the TMOD0 register during program execution.

TC0 FUNCTION SUMMARY

8-bit programmable timer Generates interrupts at specific time intervals based on the selected clock
frequency.

External event counter Counts various system "events" based on edge detection of external clock
signals at the TC0 input pin, TCL0. To start the event counting operation,
TMOD0.2 is set to "1" and TMOD0.6 is cleared to "0".

Arbitrary frequency output Outputs selectable clock frequencies to the TC0 output pin, TCLO0.

External signal divider Divides the frequency of an incoming external clock signal according to a
modifiable reference value (TREF0), and outputs the modified frequency to the
TCLO0 pin.

TIMERS and TIMER/COUNTERS KS57C2302/C2304/P2304 MICROCONTROLLER

11-10

TC0 COMPONENT SUMMARY

Mode register (TMOD0) Activates the timer/counter and selects the internal clock frequency or the
external clock source at the TCL0 pin.

Reference register (TREF0) Stores the reference value for the desired number of clock pulses between
interrupt requests.

Counter register (TCNT0) Counts internal or external clock pulses based on the bit settings in TMOD0
and TREF0.

Clock selector circuit Together with the mode register (TMOD0), lets you select one of four internal
clock frequencies or an external clock.

8-bit comparator Determines when to generate an interrupt by comparing the current value of
the counter register (TCNT0) with the reference value previously programmed
into the reference register (TREF0).

Output latch (TOL0) Where a clock pulse is stored pending output to the TC0 output pin, TCLO0.

When the contents of the TCNT0 and TREF0 registers coincide, the
timer/counter interrupt request flag (IRQT0) is set to "1", the status of TOL0 is
inverted, and an interrupt is generated.

Output enable flag (TOE0) Must be set to logic one before the contents of the TOL0 latch can be output to
TCLO0.

Interrupt request flag (IRQT0) Cleared when TC0 operation starts and the TC0 interrupt service routine is
executed and set to 1 whenever the counter value and reference value
coincide.

Interrupt enable flag (IET0) Must be set to logic one before the interrupt requests generated by
timer/counter 0 can be processed.

KS57C2302/C2304/P2304 MICROCONTROLLER TIMERS and TIMER/COUNTERS

11-11

Table 11-4. TC0 Register Overview

Register
Name

Type Description Size RAM
Address

Addressing
Mode

Reset
Value

TMOD0 Control Controls TC0 enable/disable (bit
2); clears and resumes counting
operation (bit 3); sets input
clock and clock frequency (bits
6–4)

8-bit F90H–F91H 8-bit write-only;
(TMOD0.3 is
also 1-bit
writeable)

"0"

TCNT0 Counter Counts clock pulses matching
the TMOD0 frequency setting

8-bit F94H–F95H 8-bit
read-only

"0"

TREF0 Reference Stores reference value for the
timer/counter 0 interval setting

8-bit F96H–F97H 8-bit
write-only

FFH

TOE0 Flag Controls timer/counter 0 output
to the TCLO0 pin

1-bit F92H.2 1-bit
write-only

"0"

Clock
Selector

TCNT0
8-Bit

Comparator

TOL0
IRQT0

TMOD0.7

TMOD0.6

TMOD0.5

TMOD0.4

TMOD0.3

TMOD0.2

TMOD0.1

TMOD0.0

TREF0

Clear

Inverted

Clear
SetClear

Clocks
(Fxx/2 , Fxx/2 , Fxx/2 , Fxx/2)10 8 6

8
8

8

TCLO0

P2.0 LATCHPM2 TOE0

TCL0

P1.3 4

Figure 11-2. TC0 Circuit Diagram

TIMERS and TIMER/COUNTERS KS57C2302/C2304/P2304 MICROCONTROLLER

11-12

TC0 ENABLE/DISABLE PROCEDURE

Enable Timer/Counter 0

— Set TMOD0.2 to logic one

— Set the TC0 interrupt enable flag IET0 to logic one

— Set TMOD0.3 to logic one

TCNT0, IRQT0, and TOL0 are cleared to logic zero, and timer/counter operation starts.

Disable Timer/Counter 0

— Set TMOD0.2 to logic zero

Clock signal input to the counter register TCNT0 is halted. The current TCNT0 value is retained and can be read
if necessary.

KS57C2302/C2304/P2304 MICROCONTROLLER TIMERS and TIMER/COUNTERS

11-13

TC0 PROGRAMMABLE TIMER/COUNTER FUNCTION

Timer/counter 0 can be programmed to generate interrupt requests at various intervals based on the selected
system clock frequency. Its 8-bit TC0 mode register TMOD0 is used to activate the timer/counter and to select
the clock frequency.

The reference register TREF0 stores the value for the number of clock pulses to be generated between interrupt
requests. The counter register, TCNT0, counts the incoming clock pulses, which are compared to the TREF0
value as TCNT0 is incremented. When there is a match (TREF0 = TCNT0), an interrupt request is generated.

To program timer/counter 0 to generate interrupt requests at specific intervals, choose one of four internal clock
frequencies (divisions of the system clock, fxx) and load a counter reference value into the TREF0 register.
TCNT0 is incremented each time an internal counter pulse is detected with the reference clock frequency
specified by TMOD0.4–TMOD0.6 settings.

To generate an interrupt request, the TC0 interrupt request flag (IRQT0) is set to logic one, the status of TOL0 is
inverted, and the interrupt is generated. The content of TCNT0 is then cleared to 00H and TC0 continues
counting. The interrupt request mechanism for TC0 includes an interrupt enable flag (IET0) and an interrupt
request flag (IRQT0).

TC0 OPERATION SEQUENCE

The general sequence of operations for using TC0 can be summarized as follows:

1. Set TMOD0.2 to "1" to enable TC0.

2. Set TMOD0.6 to "1" to enable the system clock (fxx) input.

3. Set TMOD0.5 and TMOD0.4 bits to desired internal frequency (fxx/2n).

4. Load a value to TREF0 to specify the interval between interrupt requests.

5. Set the TC0 interrupt enable flag (IET0) to "1".

6. Set TMOD0.3 bit to "1" to clear TCNT0, IRQT0, and TOL0, and start counting.

7. TCNT0 increments with each internal clock pulse.

8. When the comparator shows TCNT0 = TREF0, the IRQT0 flag is set to "1" and an interrupt request is
generated.

9. Output latch (TOL0) logic toggles high or low.

10. TCNT0 is cleared to 00H and counting resumes.

11. Programmable timer/counter operation continues until TMOD0.2 is cleared to "0".

TIMERS and TIMER/COUNTERS KS57C2302/C2304/P2304 MICROCONTROLLER

11-14

TC0 EVENT COUNTER FUNCTION

Timer/counter 0 can monitor or detect system 'events' by using the external clock input at the TCL0 pin as the
counter source. The TC0 mode register selects rising or falling edge detection for incoming clock signals. The
counter register TCNT0 is incremented each time the selected state transition of the external clock signal occurs.

With the exception of the different TMOD0.4–TMOD0.6 settings, the operation sequence for TC0's event counter
function is identical to its programmable timer/counter function. To activate the TC0 event counter function,

— Set TMOD0.2 to "1" to enable TC0;

— Clear TMOD0.6 to "0" to select the external clock source at the TCL0 pin;

— Select TCL0 edge detection for rising or falling signal edges by loading the appropriate values to TMOD0.5
and TMOD0.4.

Table 11-5. TMOD0 Settings for TCL0 Edge Detection

TMOD0.5 TMOD0.4 TCL0 Edge Detection

0 0 Rising edges

0 1 Falling edges

KS57C2302/C2304/P2304 MICROCONTROLLER TIMERS and TIMER/COUNTERS

11-15

TC0 CLOCK FREQUENCY OUTPUT

Using timer/counter 0, a modifiable clock frequency can be output to the TC0 clock output pin, TCLO0. To select
the clock frequency, load the appropriate values to the TC0 mode register, TMOD0. The clock interval is
selected by loading the desired reference value into the reference register TREF0. To enable the output to the
TCLO0 pin, the following conditions must be met:

— TC0 output enable flag TOE0 must be set to "1"

— I/O mode flag for P2.0 must be set to output mode ("1")

— Output latch value for P2.0 must be set to "0"

In summary, the operational sequence required to output a TC0-generated clock signal to the TCLO0 pin is as
follows:

1. Load a reference value to TREF0.

2. Set the internal clock frequency in TMOD0.

3. Initiate TC0 clock output to TCLO0 (TMOD0.2 = "1").

4. Set P2.0 mode flag to "1".

5. Set P2.0 output latch to "0".

6. Set TOE0 flag to "1".

Each time TCNT0 overflows and an interrupt request is generated, the state of the output latch TOL0 is inverted
and the TC0-generated clock signal is output to the TCLO0 pin.

++ PROGRAMMING TIP — TC0 Signal Output to the TCLO0 Pin

Output a 30 ms pulse width signal to the TCLO0 pin:

BITS EMB
SMB 15
LD EA,#79H
LD TREF0,EA
LD EA,#4CH
LD TMOD0,EA
LD EA,#04H
LD PMG2,EA ; P2.0 ← output mode
BITR P2.0 ; P2.0 clear
BITS TOE0

TIMERS and TIMER/COUNTERS KS57C2302/C2304/P2304 MICROCONTROLLER

11-16

TC0 EXTERNAL INPUT SIGNAL DIVIDER

By selecting an external clock source and loading a reference value into the TC0 reference register, TREF0, you
can divide the incoming clock signal by the TREF0 value and then output this modified clock frequency to the
TCLO0 pin. The sequence of operations used to divide external clock input can be summarized as follows:

1. Load a signal divider value to the TREF0 register.

2. Clear TMOD0.6 to "0" to enable external clock input at the TCL0 pin.

3. Set TMOD0.5 and TMOD0.4 to desired TCL0 signal edge detection.

4. Set port 2.0 mode flag (PM2) to output ("1").

5. Set P2.0 output latch to "0".

6. Set TOE0 flag to "1" to enable output of the divided frequency to the TCLO0 pin

++ PROGRAMMING TIP — External TCL0 Clock Output to the TCLO0 Pin

Output external TCL0 clock pulse to the TCLO0 pin (divided by four):

EXTERNAL (TCL0)
CLOCK PULSE

TCLO0
OUTPUT

PULSE

BITS EMB
SMB 15
LD EA,#01H
LD TREF0,EA
LD EA,#0CH
LD TMOD0,EA
LD EA,#04H
LD PMG2,EA ; P2.0 ← output mode
BITR P2.0 ; P2.0 clear
BITS TOE0

KS57C2302/C2304/P2304 MICROCONTROLLER TIMERS and TIMER/COUNTERS

11-17

TC0 MODE REGISTER (TMOD0)

TMOD0 is the 8-bit mode control register for timer/counter 0. It is addressable by 8-bit write instructions. One bit,
TMOD0.3, is also 1-bit writeable. RESET clears all TMOD0 bits to logic zero and disables TC0 operations.

F90H TMOD0.3 TMOD0.2 "0" "0"

F91H "0" TMOD0.6 TMOD0.5 TMOD0.4

TMOD0.2 is the enable/disable bit for timer/counter 0. When TMOD0.3 is set to "1", the contents of TCNT0,
IRQT0, and TOL0 are cleared, counting starts from 00H, and TMOD0.3 is automatically reset to "0" for normal
TC0 operation. When TC0 operation stops (TMOD0.2 = "0"), the contents of the TC0 counter register TCNT0 are
retained until TC0 is re-enabled.

The TMOD0.6, TMOD0.5, and TMOD0.4 bit settings are used together to select the TC0 clock source. This
selection involves two variables:

— Synchronization of timer/counter operations with either the rising edge or the falling edge of the clock signal
input at the TCL0 pin, and

— Selection of one of four frequencies, based on division of the incoming system clock frequency, for use in
internal TC0 operation.

Table 11-6. TC0 Mode Register (TMOD0) Organization

Bit Name Setting Resulting TC0 Function Address

TMOD0.7 0 Always logic zero F91H

TMOD0.6 0,1 Specify input clock edge and internal frequency

TMOD0.5

TMOD0.4

TMOD0.3 1 Clear TCNT0, IRQT0, and TOL0 and resume counting
immediately (This bit is automatically cleared to logic zero
immediately after counting resumes.)

F90H

TMOD0.2 0 Disable timer/counter 0; retain TCNT0 contents

1 Enable timer/counter 0

TMOD0.1 0 Always logic zero

TMOD0.0 0 Always logic zero

TIMERS and TIMER/COUNTERS KS57C2302/C2304/P2304 MICROCONTROLLER

11-18

Table 11-7. TMOD0.6, TMOD0.5, and TMOD0.4 Bit Settings

TMOD0.6 TMOD0.5 TMOD0.4 Resulting Counter Source and Clock Frequency

0 0 0 External clock input (TCL0) on rising edges

0 0 1 External clock input (TCL0) on falling edges

1 0 0 fxx/210 (4.09 kHz)

1 0 1 fxx /28 (16.4 kHz)

1 1 0 fxx/26 (65.5 kHz)

1 1 1 fxx/24 (262 kHz)

NOTE: 'fxx' = selected system clock of 4.19 MHz.

++ PROGRAMMING TIP — Restarting TC0 Counting Operation

1. Set TC0 timer interval to 4.09 kHz:

BITS EMB
SMB 15
LD EA,#4CH
LD TMOD0,EA
EI
BITS IET0

2. Clear TCNT0, IRQT0, and TOL0 and restart TC0 counting operation:

BITS EMB
SMB 15
BITS TMOD0.3

KS57C2302/C2304/P2304 MICROCONTROLLER TIMERS and TIMER/COUNTERS

11-19

TC0 COUNTER REGISTER (TCNT0)

The 8-bit counter register for timer/counter 0, TCNT0, is read-only and can be addressed by 8-bit RAM control
instructions. RESET sets all TCNT0 register values to logic zero (00H).

Whenever TMOD0.3 is enabled, TCNT0 is cleared to logic zero and counting resumes. The TCNT0 register
value is incremented each time an incoming clock signal is detected that matches the signal edge and frequency
setting of the TMOD0 register (specifically, TMOD0.6, TMOD0.5, and TMOD0.4).

Each time TCNT0 is incremented, the new value is compared to the reference value stored in the TC0 reference
buffer, TREF0. When TCNT0 = TREF0, an overflow occurs in the TCNT0 register, the interrupt request flag,
IRQT0, is set to logic one, and an interrupt request is generated to indicate that the specified timer/counter
interval has elapsed.

COUNT
CLOCK

TCNT0

TOL0

TIMER START INSTRUCTION
(TMOD0.3 IS SET)

TREF0 REFERENCE VALUE = n

0 1 2 n-1 n 0 1 2 n-1 0 1 2n

INTERVAL TIME

IRQT0 SET IRQT0 SET

MATCH MATCH

3

~ ~
~ ~

~ ~ ~ ~

~ ~

~ ~
~ ~

~ ~

Figure 11-3. TC0 Timing Diagram

TIMERS and TIMER/COUNTERS KS57C2302/C2304/P2304 MICROCONTROLLER

11-20

TC0 REFERENCE REGISTER (TREF0)

The TC0 reference register TREF0 is an 8-bit write-only register. It is addressable by 8-bit RAM control
instructions. RESET initializes the TREF0 value to 'FFH'.

TREF0 is used to store a reference value to be compared to the incrementing TCNT0 register in order to identify
an elapsed time interval. Reference values will differ depending upon the specific function that TC0 is being used
to perform — as a programmable timer/counter, event counter, clock signal divider, or arbitrary frequency output
source.

During timer/counter operation, the value loaded into the reference register is compared to the TCNT0 value.
When TCNT0 = TREF0, the TC0 output latch (TOL0) is inverted and an interrupt request is generated to signal
the interval or event. The TREF0 value, together with the TMOD0 clock frequency selection, determines the
specific TC0 timer interval. Use the following formula to calculate the correct value to load to the TREF0
reference register:

TC0 timer interval = (TREF0 value + 1) ×
1

TMOD0 frequency setting

(TREF0 value ≠ 0)

TC0 OUTPUT ENABLE FLAG (TOE0)

The 1-bit timer/counter 0 output enable flag TOE0 controls output from timer/counter 0 to the TCLO0 pin. TOE0
is addressable by 1-bit write instructions.

(MSB) (LSB)

F92H “u” TOE0 "u" "u"

NOTE: “u” means that the value is undetermined.

When you set the TOE0 flag to "1", the contents of TOL0 can be output to the TCLO0 pin. Whenever a RESET

occurs, TOE0 is automatically set to logic zero, disabling all TC0 output.

TC0 OUTPUT LATCH (TOL0)

TOL0 is the output latch for timer/counter 0. When the 8-bit comparator detects a correspondence between the
value of the counter register TCNT0 and the reference value stored in the TREF0 register, the TOL0 value is
inverted — the latch toggles high-to-low or low-to-high. Whenever the state of TOL0 is switched, the TC0 signal
is output. TC0 output may be directed to the TCLO0 pin.

Assuming TC0 is enabled, when bit 3 of the TMOD0 register is set to "1", the TOL0 latch is cleared to logic zero,
along with the counter register TCNT0 and the interrupt request flag, IRQT0, and counting resumes immediately.
When TC0 is disabled (TMOD0.2 = "0"), the contents of the TOL0 latch are retained and can be read, if
necessary.

KS57C2302/C2304/P2304 MICROCONTROLLER TIMERS and TIMER/COUNTERS

11-21

++ PROGRAMMING TIP — Setting a TC0 Timer Interval

To set a 30 ms timer interval for TC0, given fxx = 4.19 MHz, follow these steps.

1. Select the timer/counter 0 mode register with a maximum setup time of 62.5 ms (assume the TC0 counter
clock = fxx/210, and TREF0 is set to FFH):

2. Calculate the TREF0 value:

30 ms =
TREF0 value + 1

4.09 kHz

TREF0 + 1 =
30 ms
244 µs = 122.9 = 7AH

TREF0 value = 7AH – 1 = 79H

3. Load the value 79H to the TREF0 register:

BITS EMB
SMB 15
LD EA,#79H
LD TREF0,EA
LD EA,#4CH
LD TMOD0,EA

TIMERS and TIMER/COUNTERS KS57C2302/C2304/P2304 MICROCONTROLLER

11-22

WATCH TIMER

OVERVIEW

The watch timer is a multi-purpose timer which consists of three basic components:

— 8-bit watch timer mode register (WMOD)

— Clock selector

— Frequency divider circuit

Watch timer functions include real-time and watch-time measurement and interval timing for the main and
subsystem clock. It is also used as a clock source for the LCD controller and for generating buzzer (BUZ) output.

Real-Time and Watch-Time Measurement

To start watch timer operation, set bit 2 of the watch timer mode register (WMOD.2) to logic one. The watch
timer starts, the interrupt request flag IRQW is automatically set to logic one, and interrupt requests commence
in 0.5-second intervals.

Since the watch timer functions as a quasi-interrupt instead of a vectored interrupt, the IRQW flag should be
cleared to logic zero by program software as soon as a requested interrupt service routine has been executed.

Using a System or Subsystem Clock Source

The watch timer can generate interrupts based on the system clock frequency or on the subsystem clock. When
the zero bit of the WMOD register is set to "1", the watch timer uses the subsystem clock signal (fxt) as its
source; if WMOD.0 = "0", the system clock (fxx) is used as the signal source, according to the following formula:

Watch timer clock (fw) =
System clock (fxx)

128 = 32.768 kHz (fxx = 4.19 MHz)

This feature is useful for controlling timer-related operations during stop mode. When stop mode is engaged, the
main system clock (fx) is halted, but the subsystem clock continues to oscillate. By using the subsystem clock as
the oscillation source during stop mode, the watch timer can set the interrupt request flag IRQW to "1", thereby
releasing stop mode.

Clock Source Generation for LCD Controller

The watch timer supplies the clock frequency for the LCD controller (fLCD). Therefore, if the watch timer is

disabled, the LCD controller does not operate.

KS57C2302/C2304/P2304 MICROCONTROLLER TIMERS and TIMER/COUNTERS

11-23

Buzzer Output Frequency Generator

The watch timer can generate a steady 2 kHz, 4 kHz, 8 kHz, or 16 kHz signal to the BUZ pin. To select the
desired BUZ frequency, load the appropriate value to the WMOD register. This output can then be used to
actuate an external buzzer sound. To generate a BUZ signal, three conditions must be met:

— The WMOD.7 register bit is set to "1"

— The output latch for I/O port 2.3 is cleared to "0"

— The port 2.3 output mode flag (PM2) set to 'output' mode

Timing Tests in High-Speed Mode

By setting WMOD.1 to "1", the watch timer will function in high-speed mode, generating an interrupt every 3.91
ms. At its normal speed (WMOD.1 = '0'), the watch timer generates an interrupt request every 0.5 seconds. High-
speed mode is useful for timing events for program debugging sequences.

Check Subsystem Clock Level Feature

The watch timer can also check the input level of the subsystem clock by testing WMOD.3. If WMOD.3 is "1", the
input level at the XTin pin is high; if WMOD.3 is "0", the input level at the XTin pin is low.

TIMERS and TIMER/COUNTERS KS57C2302/C2304/P2304 MICROCONTROLLER

11-24

8

Selector
Circuit IRQ

fxt fxx/128

fw
(32.768 kHz)

MUX

fw/2 7
fw/2 (2Hz)14

Enable /

Clock
Selector

fx = Main system clock
fxt = Subsystem clock
fw = Watch timer frequency
fxx = System clock

BUZ

WMOD.7

WMOD.6

WMOD.5

WMOD.4

WMOD.3

WMOD.2

WMOD.1

WMOD.0

P2.3 Latch PM2

DISABLE

fw/8
(4 kHz)

fw/4
(8 kHz)

fw/2
(16 kHz)

fw/16
(2 kHz)

Frequency
Dividing
Circuit

fw/2 (4096 Hz)6 fLCD

Figure 11-4. Watch Timer Circuit Diagram

KS57C2302/C2304/P2304 MICROCONTROLLER TIMERS and TIMER/COUNTERS

11-25

WATCH TIMER MODE REGISTER (WMOD)

The watch timer mode register WMOD is used to select specific watch timer operations. It is 8-bit write-only
addressable. An exception is WMOD bit 3 (the XTin input level control bit) which is 1-bit read-only addressable. A
RESET automatically sets WMOD.3 to the current input level of the subsystem clock, XTin (high, if logic one; low,

if logic zero), and all other WMOD bits to logic zero.

F88H WMOD.3 WMOD.2 WMOD.1 WMOD.0

F89H WMOD.7 "0" WMOD.5 WMOD.4

In summary, WMOD settings control the following watch timer functions:

— Watch timer clock selection (WMOD.0)

— Watch timer speed control (WMOD.1)

— Enable/disable watch timer (WMOD.2)

— XTin input level control (WMOD.3)

— Buzzer frequency selection (WMOD.4 and WMOD.5)

— Enable/disable buzzer output (WMOD.7)

Table 11-8. Watch Timer Mode Register (WMOD) Organization

Bit Name Values Function Address

WMOD.7 0 Disable buzzer (BUZ) signal output F89H

1 Enable buzzer (BUZ) signal output

WMOD.6 0 Always logic zero

WMOD.5–.4 0 0 2 kHz buzzer (BUZ) signal output

0 1 4 kHz buzzer (BUZ) signal output

1 0 8 kHz buzzer (BUZ) signal output

1 1 16 kHz buzzer (BUZ) signal output

WMOD.3 0 Input level to XTin pin is low F88H

1 Input level to XTin pin is high

WMOD.2 0 Disable watch timer; clear frequency dividing circuits

1 Enable watch timer

WMOD.1 0 Normal mode; sets IRQW to 0.5 seconds

1 High-speed mode; sets IRQW to 3.91 ms

WMOD.0 0 Select fxx/128 as the watch timer clock (fw)

1 Select subsystem clock as watch timer clock (fw)

NOTE: System clock frequency (fxx) is assumed to be 4.19 MHz; subsystem clock (fxt) is assumed to be 32.768 kHz.

TIMERS and TIMER/COUNTERS KS57C2302/C2304/P2304 MICROCONTROLLER

11-26

++ PROGRAMMING TIP — Using the Watch Timer

1. Select a subsystem clock as the LCD display clock, a 0.5 second interrupt, and 2 kHz buzzer enable:

BITS EMB
SMB 15
LD EA,#04H
LD PMG2,EA ; P2.3 ← output mode
BITR P2.3
LD EA,#85H
LD WMOD,EA
BITS IEW

2. Sample real-time clock processing method:

CLOCK BTSTZ IRQW ; 0.5 second check
RET ; No, return
• ; Yes, 0.5 second interrupt generation
•
• ; Increment HOUR, MINUTE, SECOND

KS57C2302/C2304/P2304 MICROCONTROLLER LCD CONTROLLER/DRIVER

12-1

12 LCD CONTROLLER/DRIVER

OVERVIEW

The KS57C2302/C2304 microcontroller can directly drive an up-to-128-dot (32 segments x 4 commons) LCD
panel. Its LCD block has the following components:

— LCD controller/driver

— Display RAM for storing display data

— 32 segment output pins (SEG0–SEG31)

— 4 common output pins (COM0–COM3)

— Four LCD operating power supply pins (VLC0–VLC2)

The frame frequency, duty and bias, and the segment pins used for display output, are determined by bit settings
in the LCD mode register, LMOD.

The LCD control register, LCON, is used to turn the LCD display on and off, to switch current to the dividing
resistors for the LCD display, and to output LCD clock (LCDCK) and synchronizing signal (LCDSY) for LCD
display expansion. Data written to the LCD display RAM can be transferred to the segment signal pins
automatically without program control.

When a subsystem clock is selected as the LCD clock source, the LCD display is enabled even during main
clock stop and idle modes.

SEG0–SEG23
24

COM0–COM3
4

VLC0–VLC2
3

SEG24–SEG31/
P8.0–P8.78

8

D
A

T
A

 B
U

S

LCD
CONTROLLER /

DRIVER

Figure 12-1. LCD Function Diagram

LCD CONTROLLER/DRIVER KS57C2302/C2304/P2304 MICROCONTROLLER

12-2

LCD CIRCUIT DIAGRAM

SEG31/P8.7

4

4

TIMING
CONTROLLER

1E0H.0

1E0H.1

1E0H.2

1E0H.3

1F4H.0

1F4H.1

1F4H.2

1F4H.3

1FFH.0

1FFH.1

1FFH.2

1FFH.3

M
U
X

M
U
X

M
U
X

4

4

LMOD8

COM3
COM2
COM1
COM0

COM
CONTROL

VLC0
VLC1
VLC2

1 0
Port 3 latch

0 1
PMG1

LCDSY

LCDCK

S

E

G

M

E

N

T

D

R

I

V

E

R

SEG30/P8.6

SEG29/P8.5

SEG28/P8.4

SEG27/P8.3

SEG26/P8.2

SEG25/P8.1

SEG24/P8.0

SEG23

SEG22

SEG21

SEG20

SEG19

SEG0

...
fLCD

LCON

S
E
L

S
E
L

LCD
VOLTAGE
CONTROL

Figure 12-2. LCD Circuit Diagram

KS57C2302/C2304/P2304 MICROCONTROLLER LCD CONTROLLER/DRIVER

12-3

LCD RAM ADDRESS AREA

RAM addresses of bank 1 are used as LCD data memory. These locations can be addressed by 1-bit, 4-bit
instructions. When the bit value of a display segment is "1", the LCD display is turned on; when the bit value is
"0", the display is turned off.

Display RAM data are sent out through segment pins SEG0–SEG31 using a direct memory access (DMA)
method that is synchronized with the fLCD signal. RAM addresses in this location that are not used for LCD

display can be allocated to general-purpose use.

SEG01E0H

1E1H

1FAH

1FBH

1FCH

1FDH

1FEH

1FFH

1F9H

1F8H

COM3 COM2 COM1 COM0

BIT0

......
P8.0

P8.1

P8.2

P8.3

P8.4

P8.5

P8.6

P8.7

BIT1

......

BIT2

......

BIT3

......

SEG1

SEG24

SEG25

SEG26

SEG27

SEG28

SEG29

SEG30

SEG31

Figure 12-3. LCD Display Data RAM Organization

Table 12-1. Common Signal Pins Used per Duty Cycle

Display Mode COM0 Pin COM1 Pin COM2 Pin COM3 Pin

Static Selected N/C N/C N/C

1/2 Selected Selected N/C N/C

1/3 Selected Selected Selected N/C

1/4 Selected Selected Selected Selected

NOTE: NC = no connection is required.

LCD CONTROLLER/DRIVER KS57C2302/C2304/P2304 MICROCONTROLLER

12-4

LCD CONTROL REGISTER (LCON)

The LCD control register (LCON) is used to turn the LCD display on and off, to output LCD clock (LCDCK) and
synchronizing signal (LCDSY) for LCD display expansion, and to control the flow of current to dividing resistors in
the LCD circuit. Following a RESET, all LCON values are cleared to "0". This turns the LCD display off and stops
the flow of current to the dividing resistors.

F8EH “0” LCON.2 "0" LCON.0 LCON

The effect of the LCON.0 setting is dependent upon the current setting of bits LMOD.3.

Table 12-2. LCD Control Register (LCON) Organization

LCON Bit Setting Description

LCON.3 0 This bit is used for internal testing only; always logic zero.

LCON.2 0 Disable LCDCK and LCDSY signal outputs.

1 Enable LCDCK and LCDSY signal outputs.

LCON.1 0 Always logic zero.

LCON.0 0 LCD output low, display off; cut off current to dividing resistor, and output port
8 latch contents.

1 If LMOD.3 = “0”: LCD display off; output port 8 latch contents.
If LMOD.3 = “1”: COM and SEG output in display mode; LCD display on.

NOTE: The LCON.3 register must be set to “0”.

Table 12-3. LCON.0 and LMOD.3 Bit Settings

LCON.0 LMOD.3 COM0–COM3 SEG0–SEG31 P8.0–P8.7

0 – Output low; LCD display off Output low;
LCD display off

Output latch
contents

Cut off current to
dividing resistors

1 0 LCD display off LCD display off Output latch
contents

LCD display off

1 COM output corresponds to display
mode

SEG output
corresponds to
display mode

Output latch
contents

LCD display on

KS57C2302/C2304/P2304 MICROCONTROLLER LCD CONTROLLER/DRIVER

12-5

LCD MODE REGISTER (LMOD)

The LCD mode control register LMOD is used to control display mode; LCD clock, segment or port output, and
display on/off. LMOD can be manipulated using 8-bit write instructions, bit 3 (LMOD.3) can be also written by 1-
bit instructions.

F8CH LMOD.3 LMOD.2 LMOD.1 LMOD.0

F8DH LMOD.7 LMOD.6 LMOD.5 LMOD.4

The LCD clock signal, LCDCK, determines the frequency of COM signal scanning of each segment output. This
is also referred to as the 'frame frequency. Since LCDCK is generated by dividing the watch timer clock (fw), the
watch timer must be enabled when the LCD display is turned on. RESET clears the LMOD register values to logic
zero.

The LCD display can continue to operate during idle and stop modes if a subsystem clock is used as the watch
timer source. The LCD mode register LMOD controls the output mode of the 8 pins used for normal outputs
(P8.0–P8.7). Bits LMOD.7–.6 define the segment output and normal bit output configuration.

Table 12-4. LCD Mode Register (LMOD) Organization

LMOD.7 LMOD.6 LCD Output Segments and 1-Bit Output Pins

0 0 Segments 24–27, and 28–31

0 1 Segments 24–27; 1-bit output at P8.4–P8.7

1 0 Segments 28–31; 1-bit output at P8.0–P8.3

1 1 1-bit output only at P8.0–P8.3 and P8.4–P8.7

LMOD.5 LMOD.4 LCD Clock (LCDCK) Frequency

0 0 fw/ 29 = 64 Hz

0 1 fw/28 = 128 Hz

1 0 fw/27 = 256 Hz

1 1 fw/26 = 512 Hz

LMOD.3 LMOD.2 LMOD.1 LMOD.0 Duty and Bias Selection for LCD Display

0 – – – LCD Display off

1 0 0 0 1/4 duty, 1/3 bias

1 0 0 1 1/3 duty, 1/3 bias

1 0 1 0 1/2 duty, 1/2 bias

1 0 1 1 1/3 duty, 1/2 bias

1 1 0 0 Static
NOTE: fw =32.768 kHz, watch timer clock

LCD CONTROLLER/DRIVER KS57C2302/C2304/P2304 MICROCONTROLLER

12-6

Table 12-5. LCD Clock Signal (LCDCK), Frame Frequency and LCD sync Signal (LCDSY)

LCDCK Frequency Static 1/2 Duty 1/3 Duty 1/4 Duty

fw/29 = 64 Hz 64 (16) 32 (16) 21 (21) 16 (16)

fw/28 = 128 Hz 128 (32) 64 (32) 43 (43) 32 (32)

fw/27 = 256 Hz 256 (64) 128 (64) 85 (85) 64 (64)

fw/26 = 512 Hz 512 (128) 256 (128) 171 (171) 128 (128)

NOTES:
1. fw = 32.768 kHz
2. The number in parentheses is a frequency for LCDSY.

LCD DRIVE VOLTAGE

LCD Power Supply Static Mode 1/2 Bias 1/3 Bias

VLC0 VLCD VLCD VLCD

VLC1 2/3 VLCD 1/2 VLCD 2/3 VLCD

VLC2 1/3 VLCD 1/2 VLCD 1/3 VLCD

VLC3 0 V 0 V 0 V

NOTE: The LCD panel display may deteriorate if a DC voltage is applied that lies between the common and segment signal
voltage. Therefore, always drive the LCD panel with AC voltage.

LCD VOLTAGE DIVIDING RESISTORS

On-chip voltage dividing resistors for the LCD drive power supply can be configured by internal voltage dividing
resistors. Using these internal voltage dividing resistors, you can drive either a 3-volt or a 5-volt LCD display
using external bias. Bias pins are connected externally to the VLCD pin so that it can handle the different LCD

drive voltages. To cut off the current supply to the voltage dividing resistors, clear LCON.0 when you turn the
LCD display off.

COMMON (COM) SIGNALS

The common signal output pin selection (COM pin selection) varies according to the selected duty cycle.

— In 1/2 duty mode, COM0–COM1 pins are selected

— In 1/3 duty mode, COM0–COM2 pins are selected

— In 1/4 duty mode, COM0–COM3 pins are selected

SEGMENT (SEG) SIGNALS

The 32 LCD segment signal pins are connected to corresponding display RAM locations at bank 1. Bits of the
display RAM are synchronized with the common signal output pins.

When the bit value of a display RAM location is "1", a select signal is sent to the corresponding segment pin.
When the display bit is "0", a 'no-select' signal is sent to the corresponding segment pin.

KS57C2302/C2304/P2304 MICROCONTROLLER LCD CONTROLLER/DRIVER

12-7

R = Voltage dividing resistor
R' = External resistor

BIAS
PIN

Voltage Dividing Resistor Adjustment

LCON.0

VLC0

VLC1

VLC2

VLC3

VDD

VSS

2R

R

R

R

VLCD

2R’

R’

R’

R’

BIAS
PIN

Static and 1/3 Bias (V LCD = 3 V at V DD = 5 V)

LCON.0

VLC0

VLC1

VLC2

VLC3

VDD

VSS

2R

R

R

R

VLCD = 3 V

BIAS
PIN

1/2 Bias (V LCD = 2.5 V at V DD = 5 V)

LCON.0

VLC0

VLC1

VLC2

VLC3

VDD

VSS

2R

R

R

R

VLCD = 2.5 V

BIAS
PIN

Static and 1/3 Bias (V LCD = 5 V at V DD = 5 V)

Static and 1/3 Bias (V LCD = 3 V at V DD = 3 V)

LCON.0

VLC0

VLC1

VLC2

VLC3

VDD

VSS

2R

R

R

R

VLCD = 5 V

Figure 12-4. Voltage Dividing Resistor Circuit Diagrams

LCD CONTROLLER/DRIVER KS57C2302/C2304/P2304 MICROCONTROLLER

12-8

+VLCD

– VLCD

0 V

 SEG12
VLC0

VSS

 SEG11

VLC0

VSS

 COM0
VLC0

VSS

COM0–
SEG11

COM0–
SEG12

+VLCD

– VLCD

0 V

Tf

Figure 12-5. LCD Signal Waveforms in Static Mode

KS57C2302/C2304/P2304 MICROCONTROLLER LCD CONTROLLER/DRIVER

12-9

COM3
COM2
COM1
COM0

TIMING
STROBE

BIT 0

Open

Possible

SEG0

SEG1

SEG2

SEG3

SEG4

SEG5

SEG6

SEG7

SEG8

SEG9

SEG10

SEG11

SEG12

SEG13

SEG14

SEG15

SEG16

SEG17

SEG18

SEG19

SEG20

SEG21

SEG22

SEG23

1E8H

1E9H

1EAH

1EBH

1ECH

1EDH

1EEH

1EFH

1F0H

1F1H

1F2H

1F3H

1F4H

1F5H

1F6H

1F7H

1F8H

1F9H

1FAH

1FBH

1FCH

1FDH

1FEH

1FFH

0
1

1
1

1
1

0
0

1
0

1
0

1
1

1
1

0
0

1
1

0
1

1
0

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

1E0H

1E1H

1E2H

1E3H

1E4H

1E5H

1E6H

1E7H

0
0

0
0

0
1

1
0

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

SEG24

SEG25

SEG26

SEG27

SEG28

SEG29

SEG30

SEG31

Figure 12-6. LCD Connection Example in Static Mode

LCD CONTROLLER/DRIVER KS57C2302/C2304/P2304 MICROCONTROLLER

12-10

+ VLCD

– V LCD

V LC0

VSS

VLC1, 2

VLC0

VSS

VLC1, 2

VLC0

VSS

VLC1, 2

+ 1/2 V LCD

– 1/2 V LCD

0

– V LCD

+ 1/2 V LCD

– 1/2 V LCD

0

+ V LCD

COM1

 SEG9

COM0–
SEG9

COM1–
SEG9

 COM0

Tf

Figure 12-7. LCD Signal Waveforms at 1/2 Duty, 1/2 Bias

KS57C2302/C2304/P2304 MICROCONTROLLER LCD CONTROLLER/DRIVER

12-11

SEG30

SEG31

COM3
COM2
COM1
COM0

TIMING
STROBE

SEG0

SEG1

SEG2

SEG3

SEG4

SEG5

SEG6

SEG7

SEG8

SEG9

SEG10

SEG11

SEG12

SEG13

SEG14

SEG15

SEG16

SEG17

SEG18

SEG19

SEG20

SEG21

SEG22

SEG23

1E8H

1E9H

1EAH

1EBH

1ECH

1EDH

1EEH

1EFH

1F0H

1F1H

1F2H

1F3H

1F4H

1F5H

1F6H

1F7H

1F8H

1F9H

1FAH

1FBH

1FCH

1FDH

1FEH

1FFH

1E0H

1E1H

1E2H

1E3H

1E4H

1E5H

1E6H

1E7H

SEG24

SEG25

SEG26

SEG27

SEG28

SEG29

Bit 0
1

0
0

1
0

1
1

1
0

1
1

1
1

1
0

1
0

1
1

1
1

1
1

1

1
1

1
0

0
0

1
0

1
1

0
0

1
1

1
0

1
0

0
1

1
1

0
1

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

0
0

1
1

1
0

1
0

0
0

0
0

1
1

1
0

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

Bit 1

OPEN

Figure 12-8. LCD Connection Example at 1/2 Duty, 1/2 Bias

LCD CONTROLLER/DRIVER KS57C2302/C2304/P2304 MICROCONTROLLER

12-12

V LC0

VSS

V LC1, 2COM0

Tf

VLC0

VSS

VLC1, 2
COM1

VLC0

V SS

V LC1, 2COM2

VLC0

V SS

V LC1, 2SEG12

+ VLCD

– V LCD

+ 1/2 V LCD

– 1/2 V LCD

0
COM0–
SEG12

– V LCD

+ 1/2 VLCD

– 1/2 V LCD

0

+ V LCD

COM1–
SEG12

– V LCD

+ 1/2 VLCD

– 1/2 V LCD

0

+ V LCD

COM2–
SEG12

Figure 12-9. LCD Signal Waveforms at 1/3 Duty, 1/2 Bias

KS57C2302/C2304/P2304 MICROCONTROLLER LCD CONTROLLER/DRIVER

12-13

Tf

+ 1/3 VLCD

+ VLCD

COM2–
SEG12 – 1/3 VLCD

0

– VLCD

+ 1/3 VLCD

+ VLCD

COM1–
SEG12 – 1/3 VLCD

0

– VLCD

LCD

+ 1/3 VLCD

+ VLCD

COM0–
SEG12 – 1/3 VLCD

0

– V

 SEG12

V

V

LC0

SS

VLC2

VLC1

COM2

V

V

LC0

SS

VLC2

VLC1

COM1

V

V

LC0

SS

VLC2

VLC1

COM0

V

V

LC0

SS

VLC2

VLC1

Figure 12-10. LCD Signal Waveforms at 1/3 Duty, 1/3 Bias

LCD CONTROLLER/DRIVER KS57C2302/C2304/P2304 MICROCONTROLLER

12-14

COM3
COM2
COM1
COM0

Timing
Strobe

OPEN

SEG0

SEG1

SEG2

SEG3

SEG4

SEG5

SEG6

SEG7

SEG8

SEG9

SEG10

SEG11

SEG12

SEG13

SEG14

SEG15

SEG16

SEG17

SEG18

SEG19

SEG20

SEG21

SEG22

SEG23

1E8H

1E9H

1EAH

1EBH

1ECH

1EDH

1EEH

1EFH

1F0H

1F1H

1F2H

1F3H

1F4H

1F5H

1F6H

1F7H

1F8H

1F9H

1FAH

1FBH

1FCH

1FDH

1FEH

1FFH

1
0

1
1

0
1

1
1

0
1

1
0

1
1

1
1

1
1

1
1

1
1

1
1

0
1

1
0

1
1

0
1

1
1

1
1

0
1

1
1

1
0

1
1

1
0

1
0

X
1

0
X

0
0

X
1

0
X

1
1

0
0

X
1

0
X

1
0

X
1

0
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

Bit 0

1E0H

1E1H

1E2H

1E3H

1E4H

1E5H

1E6H

1E7H

X
X

0
0

1
0

1
1

X
X

0
0

1
1

1
0

X
X

X
0

0
X

1
0

X
X

X
X

X
X

X
X

SEG24

SEG25

SEG26

SEG27

SEG28

SEG29

Bit 2Bit 1

Figure 12-11. LCD Connection Example at 1/3 Duty, 1/3 Bias

KS57C2302/C2304/P2304 MICROCONTROLLER LCD CONTROLLER/DRIVER

12-15

COM0

V

V

LC0

SS

VLC2

VLC1

COM1

V

V

LC0

SS

VLC2

VLC1

COM2

V

V

LC0

SS

VLC2

VLC1

COM3

V

V

LC0

SS

VLC2

VLC1

 SEG13

V

V

LC0

SS

VLC2

VLC1

COM0–
SEG13

+ 1/3 VLCD

– V LCD

+ V LCD

– 1/3 V LCD

0

COM1–
SEG13

+ 1/3 VLCD

– V LCD

+ VLCD

– 1/3 VLCD

0

T f

Figure 12-12. LCD Signal Waveforms at 1/4 Duty, 1/3 Bias

LCD CONTROLLER/DRIVER KS57C2302/C2304/P2304 MICROCONTROLLER

12-16

SEG29

COM3
COM2
COM1
COM0

Timing
Strobe

SEG0

SEG1

SEG2

SEG3

SEG4

SEG5

SEG6

SEG7

SEG8

SEG9

SEG10

SEG11

SEG12

SEG13

SEG14

SEG15

SEG16

SEG17

SEG18

SEG19

SEG20

SEG21

SEG22

SEG23

1E8H

1E9H

1EAH

1EBH

1ECH

1EDH

1EEH

1EFH

1F0H

1F1H

1F2H

1F3H

1F4H

1F5H

1F6H

1F7H

1F8H

1F9H

1FAH

1FBH

1FCH

1FDH

1FEH

1FFH

1
1

1
1

1
1

1
1

1
1

1
1

0
0

0
1

0
1

1
0

1
1

1
1

1
0

1
0

0
1

1
1

1
1

0
1

1
1

1
1

1
1

1
1

0
1

0
0

0
1

1
1

0
1

1
1

0
1

1
1

1
1

0
0

1
0

1
0

1
1

1
0

1
0

1
0

0
0

1
0

1
0

1
0

0
1

0
1

0
0

0
1

0
1

0
0

Bit 0

1E0H

1E1H

1E2H

1E3H

1E4H

1E5H

1E6H

1E7H

0
0

0
1

0
1

1
0

0
1

1
1

1
1

1
1

0
1

1
0

0
1

0
1

0
0

1
0

1
0

0
0

SEG24

SEG25

SEG26

SEG27

SEG28

Bit 1 Bit 2

SEG30

SEG31

Bit 3

Figure 12-13. LCD Connection Example at 1/4 Duty, 1/3 Bias

KS57C2302/C2304/P2304 MICROCONTROLLER ELECTRICAL DATA

13-1

13 ELECTRICAL DATA

OVERVIEW

In this section, information on KS57C2302/C2304 electrical characteristics is presented as tables and graphics.
The information is arranged in the following order:

Standard Electrical Characteristics

— Absolute maximum ratings

— D.C. electrical characteristics

— Main system clock oscillator characteristics

— Subsystem clock oscillator characteristics

— I/O capacitance

— A.C. electrical characteristics

— Operating voltage range

Miscellaneous Timing Waveforms

— A.C timing measurement point

— Clock timing measurement at XIN

— Clock timing measurement at XTIN

— TCL0 timing

— Input timing for RESET

— Input timing for external interrupts

Stop Mode Characteristics and Timing Waveforms

— RAM data retention supply voltage in stop mode

— Stop mode release timing when initiated by RESET

— Stop mode release timing when initiated by an interrupt request

ELECTRICAL DATA KS57C2302/C2304/P2304 MICROCONTROLLER

13-2

Table 13-1. Absolute Maximum Ratings

(TA = 25 °C)

Parameter Symbol Conditions Rating Units

Supply Voltage VDD – – 0.3 to + 6.5 V

Input Voltage VI1 All I/O ports – 0.3 to VDD + 0.3

Output Voltage VO – 0.3 to VDD + 0.3

Output Current High IOH One I/O port active – 15 mA

All I/O ports active – 30

Output Current Low IOL One I/O port active + 30 (Peak value)

+ 15 (note)

Total value for ports 2 and 3 + 60 (Peak value)

+ 20 (note)

Total value for port 6 + 50

+ 20 (note)

Operating Temperature TA – – 40 to + 85 °C

Storage Temperature Tstg – – 65 to + 150

NOTE: The values for Output Current Low (IOL) are calculated as Peak Value × Duty .

Table 13-2. D.C. Electrical Characteristics

(TA = – 40 °C to + 85 °C, VDD = 1.8 V to 5.5 V)

Parameter Symbol Conditions Min Typ Max Units

Input high
voltage

VIH1 All input pins except those
specified below for VIH2, VIH3

0.7 VDD – VDD V

VIH2 Ports 1, 6, and RESET 0.8 VDD – VDD

VIH3 XIN, XOUT, and XTIN VDD – 0.1 – VDD

Input low VIL1 Ports 2 and 3 – – 0.3 VDD V

voltage VIL2 Ports 1, 6 and RESET – – 0.2 VDD

VIL3 XIN, XOUT, and XTIN – – 0.1

Output high
voltage

VOH1 VDD = 4.5 V to 5.5 V
IOH = – 1 mA

Ports 2, 3, 6 and BIAS

VDD – 1.0 – – V

VOH2 VDD = 4.5 V to 5.5 V
IOH = –100 µA Port 8 only

VDD – 2.0 – –

KS57C2302/C2304/P2304 MICROCONTROLLER ELECTRICAL DATA

13-3

Table 13-2. D.C. Electrical Characteristics (Continued)

(TA = – 40 °C to + 85 °C, VDD = 1.8 V to 5.5 V)

Parameter Symbol Conditions Min Typ Max Units

Output low
voltage

VOL1 VDD = 4.5 V to 5.5 V
IOL = 15 mA, Ports 2, 3, 6

– 0.4 2 V

VOL2 VDD = 4.5 V to 5.5 V
IOL = 100 µA; Port 8 only

– – 1

Input high
leakage
current

ILIH1 VIN = VDD

All input pins except those
specified below for ILIH2

– – 3 µA

ILIH2 VIN = VDD
XIN, XOUT and XTIN

20

Input low
leakage
current

ILIL1 VIN = 0 V
All input pins except XIN, XOUT,
and XTIN

– – – 3

ILIL2 VIN = 0 V
XIN, XOUT, and XTIN

– 20

Output high
leakage
current

ILOH1 VOUT = VDD

All output pins
– – 3 µA

Output low
leakage
current

ILOL VOUT = 0 V

All output pins
– 3

Pull-up
resistor

RL1 VIN = 0 V; VDD = 5 V

Ports 1, 2, 3, 6
25 50 100 KΩ

VDD = 3 V 50 100 200

RL2 VIN = 0 V; VDD = 5 V

RESET

100 250 400

VDD = 3 V 200 500 800

LCD voltage
dividing
resistor

RLCD
TA = 25 øC

100 150 200

COM output RCOM VDD = 5 V − 3 6

impedance VDD = 3 V 5 15

SEG output RSEG VDD = 5 V 3 6

impedance VDD = 3 V 5 15

COM output
voltage
deviation

VDC VDD = 5 V (VLC0-COMi)

Io = ± 15uA (i= 0-3)

– ± 45 ± 90 mV

ELECTRICAL DATA KS57C2302/C2304/P2304 MICROCONTROLLER

13-4

Table 13-2. D.C. Electrical Characteristics (Continued)

(TA = – 40 °C to + 85 °C, VDD = 1.8 V to 5.5 V)

Parameter Symbol Conditions Min Typ Max Units

SEG output
voltage
deviation

VDS VDD = 5 V (VLC0-SEGi)

Io = ± 15uA (i= 0-31)

– ñ 45 ñ 90 mV

VLC0 Output

voltage

VLC0 TA = 25 øC 0.6VDD

– 0.2
0.6VDD 0.6VDD

+ 0.2
V

VLC1 Output
voltage

VLC1 TA = 25 øC 0.4VDD

– 0.2
0.4VDD 0.4VDD

+ 0.2

VLC2 Output
voltage

VLC2 TA = 25 øC 0.2VDD

– 0.2
0.2VDD 0.2VDD

+ 0.2

KS57C2302/C2304/P2304 MICROCONTROLLER ELECTRICAL DATA

13-5

Table 13-2. D.C. Electrical Characteristics (Concluded)

(TA = – 40 °C to + 85 °C, VDD = 1.8 V to 5.5 V)

Parameter Symbol Conditions Min Typ Max Units

Supply
Current (1)

IDD1 (2) Main operating:
VDD = 5 V ± 10%

CPU = fx/4
SCMOD = 0000B
Crystal oscillator
C1 = C2 = 22 pF

6.0 MHz
4.19 MHz

– 3.5
2.5

8
5.5

mA

VDD = 3 V ± 10% 6.0 MHz
4.19 MHz

1.6
1.2

4
3

IDD2 (2) Main idle mode;
VDD = 5 V ± 10%

CPU = fx/4
SCMOD =0000B
Crystal oscillator
C1 = C2 = 22 pF

6.0 MHz
4.19 MHz

– 1
0.9

2.5
2

VDD = 3 V ± 10% 6.0 MHz
4.19 MHz

0.5
0.4

1.0
0.8

IDD3 Sub operating:
VDD = 3 V ± 10%

CPU = fxt/4,
SCMOD = 1001B
32 kHz crystal oscillator

– 15 30 µA

IDD4 Sub idle mode:
VDD = 3 V ± 10%

CPU = fxt/4, SCMOD = 1001B
32 kHz crystal oscillator

– 6 15

IDD5 Stop mode:
VDD = 5V ± 10%
CPU=fxt/4, SCMOD = 1101B

IDD6
 (3) Stop mode:

VDD = 5 V ± 10%

CPU = fx/4, SCMOD = 0100B

– 0.5 3

NOTES:
1. D.C. electrical values for supply current (IDD1 to IDD6) do not include current drawn through internal pull-up resistors
 and through LCD voltage dividing resistors.
2. Data includes the power consumption for sub-system clock oscillation.
3. When the system clock mode register, SCMOD, is set to 0100B, the sub-system clock oscillation stops. The main-
 system clock oscillation stops by the STOP instruction.

ELECTRICAL DATA KS57C2302/C2304/P2304 MICROCONTROLLER

13-6

Table 13-3. Main System Clock Oscillator Characteristics

(TA = – 40 °C + 85 °C, VDD = 1.8 V to 5.5 V)

Oscillator Clock
Configuration

Parameter Test Condition Min Typ Max Units

Ceramic
Oscillator

XIN XOUT

C1 C2

Oscillation frequency
(1)

– 0.4 – 6.0 MHz

Stabilization time (2) Stabilization occurs
when VDD is equal to

the minimum oscillator
voltage range.

– – 4 ms

Crystal
Oscillator

C1 C2

XIN XOUT Oscillation frequency
(1)

– 0.4 – 6.0 MHz

Stabilization time (2) VDD = 4.5 V to 5.5 V – – 10 ms

VDD = 1.8 V to 4.5 V – – 30

External
Clock

XIN XOUT XIN input frequency (1) – 0.4 – 6.0 MHz

XIN input high and low
level width (tXH, tXL)

– 83.3 – – ns

RC
Oscillator

R

XIN XOUT Frequency (1) VDD = 5 V

R = 20 KΩ, VDD = 5 V

R = 39 KΩ, VDD = 3 V

0.4 −
2.0
1.0

2 MHz

NOTES:
1. Oscillation frequency and XIN input frequency data are for oscillator characteristics only.
2. Stabilization time is the interval required for oscillator stabilization after a power-on occurs, or when stop mode is

terminated.

KS57C2302/C2304/P2304 MICROCONTROLLER ELECTRICAL DATA

13-7

Table 13-4. Subsystem Clock Oscillator Characteristics

(TA = – 40 °C + 85 °C, VDD = 1.8 V to 5.5 V)

Oscillator Clock
Configuration

Parameter Test Condition Min Typ Max Units

Crystal
Oscillator

XTIN XTOUT

C1 C2

Oscillation frequency
 (1)

– 32 32.768 35 kHz

Stabilization time (2) VDD = 4.5 V to 5.5 V – 1.0 2 s

VDD = 1.8 V to 4.5 V – – 10

External
Clock

XTIN XTOUT XTIN input frequency
(1)

– 32 – 100 KHz

XTIN input high and
low level width (tXTL,
tXTH)

– 5 – 15 µs

NOTES:
1. Oscillation frequency and XTIN input frequency data are for oscillator characteristics only.
2. Stabilization time is the interval required for oscillator stabilization after a power-on occurs.

Table 13-5. Input/Output Capacitance

(TA = 25 °C, VDD = 0 V)

Parameter Symbol Condition Min Typ Max Units

Input
capacitance

CIN f = 1 MHz; Unmeasured pins
are returned to VSS

– – 15 pF

Output
capacitance

COUT – – 15 pF

I/O capacitance CIO – – 15 pF

ELECTRICAL DATA KS57C2302/C2304/P2304 MICROCONTROLLER

13-8

Table 13-6. A.C. Electrical Characteristics

(TA = – 40 °C to + 85 °C, VDD = 1.8 V to 5.5 V)

Parameter Symbol Conditions Min Typ Max Units

Instruction cycle tCY VDD = 2.7 V to 5.5 V 0.67 – 64 µs

time (1) VDD = 1.8 V to 5.5 V 0.95 – 64

With subsystem clock (fxt) 114 122 125

TCL0 input fTI0 VDD = 2.7 V to 5.5 V 0 – 1.5 MHz

frequency VDD = 1.8 V to 5.5 V 1 MHz

TCL0 input high, tTIH0, tTIL0 VDD = 2.7 V to 5.5 V 0.48 – – µs

low width VDD = 1.8 V to 5.5 V 1.8

Interrupt input tINTH, tINTL INT0 (2) – – µs

high, low width INT1, INT2, KS0–KS3 10

RESET Input Low
Width

tRSL Input 10 – – µs

NOTES:
1. Unless otherwise specified, Instruction Cycle Time condition values assume a main system clock (fx) source.
2. Minimum value for INT0 is based on a clock of 2tCY or 128/fx as assigned by the IMOD0 register setting.

KS57C2302/C2304/P2304 MICROCONTROLLER ELECTRICAL DATA

13-9

CPU CLOCK = 1/n x oscillator frequency (n = 4, 8, 64)

1

 SUPPLY VOLTAGE (V)

250 kHz

500 kHz

15.6 kHz

CPU CLOCK

750 kHz

1.0475 MHz
1.5 MHz

2 3 4 5 6 7

Main OSC. Freq.

3 MHz

4.19 MHz
6 MHz

Figure 13-1. Standard Operating Voltage Range

Table 13-7. RAM Data Retention Supply Voltage in Stop Mode

(TA = – 40 °C to + 85 °C)

Parameter Symbol Conditions Min Typ Max Unit

Data retention supply voltage VDDDR Normal operation 1.5 – 6.5 V

Data retention supply current IDDDR VDDDR = 2.0 V – 0.1 1 µA

Release signal set time tSREL Normal operation 0 – – µs

Oscillator stabilization wait tWAIT Released by RESET – 217 / fx – ms

time (1) Released by interrupt – (2) –

NOTES:
1. During oscillator stabilization wait time, all CPU operations must be stopped to avoid instability during oscillator start-

up.
2. Use the basic timer mode register (BMOD) interval timer to delay execution of CPU instructions during the wait time.

ELECTRICAL DATA KS57C2302/C2304/P2304 MICROCONTROLLER

13-10

TIMING WAVEFORMS

tSREL

tWAIT

VDD

RESET

EXECUTION OF
STOP INSTRUCTION

VDDDR

DATA RETENTION MODE

STOP MODE

INTERNAL RESET
OPERATION

IDLE MODE

OPERATING
MODE

Figure 13-2. Stop Mode Release Timing When Initiated By RESET

VDD

EXECUTION OF
STOP INSTRUCTION

VDDDR

DATA RETENTION MODE

STOP MODE

tWAIT

tSREL

IDLE MODE
NORMAL
OPERATING
MODE

POWER-DOWN MODE TERMINATING SIGNAL
(INTERRUPT REQUEST)

Figure 13-3. Stop Mode Release Timing When Initiated By Interrupt Request

KS57C2302/C2304/P2304 MICROCONTROLLER ELECTRICAL DATA

13-11

0.8 VDD

0.2 VDD

0.8 VDD

0.2 VDD

MEASUREMENT
POINTS

Figure 13-4. A.C. Timing Measurement Points (Except for Xin and XTin)

Xin

tXL tXH

1 / fx

VDD – 0.1 V

0.1 V

Figure 13-5. Clock Timing Measurement at Xin

XTin

tXTL tXTH

1 / fxt

VDD – 0.1 V

0.1 V

Figure 13-6. Clock Timing Measurement at XTin

ELECTRICAL DATA KS57C2302/C2304/P2304 MICROCONTROLLER

13-12

TCL0

tTIL0 tTIH0

1 / f TI0

0.8 V DD

0.2 V DD

Figure 13-7. TCL0 Timing

RESET

tRSL

0.2 VDD

Figure 13-8. Input Timing for RESET Signal

INT0, 1, 2, 4
KS0 to KS3

tINTL tINTH

0.8 VDD

0.2 VDD

Figure 13-9. Input Timing for External Interrupts and Quasi-Interrupts

KS57C2302//C2304/P2304 MICROCONTROLLER MECHANICAL DATA

14-1

14 MECHANICAL DATA

OVERVIEW

The KS57C2302/C2304 microcontroller is available in a 64-pin QFP package (Samsung: 64-QFP-1420F).
Package dimensions are shown in Figure 14-1.

NOTE: Dimensions are in millimeters.

17
.9

0
±

 0
.3

14
.0

0
±

 0
.2

(1
.0

0
)

64-QFP-1420F

23.90 ± 0.3

#64

(1.00)

#1

0.40
+0.10
- 0.05

± 0.15MAX

0.
80

 ±
 0

.2
0

2.65 ± 0.10

0.05~0.25

3.00 MAX

0.15
+0.10
- 0.05

0-8°

0.10 MAX

0.80 ± 0.20

1.00

20.00 ± 0.2

Figure 15-1. 64-QFP-1420F Package Dimensions

MECHANICAL DATA KS57C2302//C2304/P2304 MICROCONTROLLER

14–2

NOTES

KS57C2302/C2304/P2304 MICROCONTROLLER KS57P2304 OTP

15-1

15 KS57P2304 OTP

OVERVIEW

The KS57P2304 single-chip CMOS microcontroller is the OTP (One Time Programmable) version of the
KS57C2302/C2304 microcontroller. It has an on-chip EPROM instead of masked ROM. The EPROM is accessed
by a serial data format.

The KS57P2304 is fully compatible with the KS57C2302/C2304, both in function and in pin configuration.
Because of its simple programming requirements, the KS57P2304 is ideal for use as an evaluation chip for the
KS57C2304.

KS57P2304 OTP KS57C2302/C2304/P2304 MICROCONTROLLER

15-2

SEG13
SEG14
SEG15
SEG16

SEG17
SEG18
SEG19
SEG20
SEG21
SEG22

SEG23
SEG24/P8.0
SEG25/P8.1
SEG26/P8.2
SEG27/P8.3

SEG28/P8.4
SEG29/P8.5
SEG30/P8.6
SEG31/P8.7

51
50
49
48

47
46
45
44
43
42

41
40
39
38
37

36
35
34
33

64

63

62

61

60

59

58

57

56

55

54

53

52

1
2
3
4
5

6
7
8
9
10
11

12
13
14
15
16

17
18
19

20

21

22

23

24

25

26

27

28

29

30

31

32

KS57P2304
(TOP VIEW)

COM0
COM1
COM2
COM3
BIAS

VLC0
SDAT /VLC1
SCLK /VLC2

VDD /VDD
VSS/VSS

Xout

Xin
VPP/TEST

XTin
XTout

RESET /RESET

P1.0/INT0
P1.1/INT1
P1.2/INT2

P
1.

3/
T

C
L0

P

2.
0/

T
C

LO
0

P
2.

1
P

2.
2/

C
LO

P

2.
3/

B
U

Z

P
3.

0/
LC

D
C

K

P
3.

1/
LC

D
S

Y

P
3.

2
P

3.
3

P
6.

0/
K

S
0

P
6.

1/
K

S
1

P
6.

2/
K

S
2

P
6.

3/
K

S
3

S
E

G
0

S
E

G
1

S
E

G
2

S
E

G
3

S
E

G
4

S
E

G
5

S
E

G
6

S
E

G
7

S
E

G
8

S
E

G
9

S
E

G
10

S

E
G

11

S
E

G
12

Figure 15-1. KS57P2304 Pin Assignments (64-QFP)

KS57C2302/C2304/P2304 MICROCONTROLLER KS57P2304 OTP

15-3

Table 15-1. Pin Descriptions Used to Read/Write the EPROM

Main Chip During Programming

Pin Name Pin Name Pin No. I/O Function

VLC1 SDAT 7 I/O Serial data pin. Output port when reading and
input port when writing. Can be assigned as a
Input / push-pull output port.

VLC2 SCLK 8 I/O Serial clock pin. Input only pin.

TEST VPP (TEST) 13 I Power supply pin for EPROM cell writing
(indicates that OTP enters into the writing mode).
When 12.5 V is applied, OTP is in writing mode
and when 5 V is applied, OTP is in reading mode.
(Option)

RESET RESET 16 I Chip initialization

VDD / VSS VDD / VSS 9/10 I Logic power supply pin. VDD should be tied to +5

V during programming.

Table 15-2. Comparison of KS57P2304 and KS57C2302/C2304 Features

Characteristic KS57P2304 KS57C2302/C2304

Program Memory 4-Kbyte EPROM 2-K / 4-Kbyte mask ROM

Operating Voltage (VDD) 2.0 V to 5.5 V at 4.19 MHz
1.8 V to 5.5 V at 3 MHz

2.0 V to 5.5 V at 4.19 MHz
1.8 V to 5.5 V at 3 MHz

OTP Programming Mode VDD = 5 V, VPP (TEST) = 12.5 V –

Pin Configuration 64 QFP 64 QFP

EPROM Programmability User Program 1 time Programmed at the factory

OPERATING MODE CHARACTERISTICS

When 12.5 V is supplied to the Vpp (TEST) pin of the KS57P2304, the EPROM programming mode is entered.
The operating mode (read, write, or read protection) is selected according to the input signals to the pins listed in
Table 15-3 below.

Table 15-3. Operating Mode Selection Criteria

VDD Vpp
(TEST)

REG/
MEM

Address
(A15-A0)

R/W Mode

5 V 5 V 0 0000H 1 EPROM read

12.5 V 0 0000H 0 EPROM program

12.5 V 0 0000H 1 EPROM verify

12.5 V 1 0E3FH 0 EPROM read protection

NOTE: "0" means low level; "1" means high level.

KS57P2304 OTP KS57C2302/C2304/P2304 MICROCONTROLLER

15-4

 Table 15-4. D.C. Electrical Characteristics

(TA = – 40 °C to + 85 °C, VDD = 1.8 V to 5.5 V)

Parameter Symbol Conditions Min Typ Max Units

Input high
voltage

VIH1 All input pins except those
specified below for VIH2, VIH3

0.7 VDD – VDD V

VIH2 Ports 1, 6, and RESET 0.8 VDD – VDD

VIH3 XIN, XOUT, and XTIN VDD – 0.1 – VDD

Input low VIL1 Ports 2 and 3 – – 0.3 VDD V

voltage VIL2 Ports 1, 6 and RESET – – 0.2 VDD

VIL3 XIN, XOUT, and XTIN – – 0.1

Output high
voltage

VOH1 VDD = 4.5 V to 5.5 V
IOH = – 1 mA

Ports 2, 3, 6 and BIAS

VDD – 1.0 – – V

VOH2 VDD = 4.5 V to 5.5 V
IOH = –100 µA Port 8 only

VDD – 2.0 – –

Output low
voltage

VOL1 VDD = 4.5 V to 5.5 V
IOL = 15 mA, Ports 2, 3, 6

– 0.4 2 V

VOL2 VDD = 4.5 V to 5.5 V
IOL = 100 µA; Port 8 only

– – 1

Input high
leakage
current

ILIH1 VIN = VDD

All input pins except those
specified below for ILIH2

– – 3 µA

ILIH2 VIN = VDD
XIN, XOUT and XTIN

– – 20

Input low
leakage
current

ILIL1 VIN = 0 V
All input pins except XIN, XOUT,
and XTIN

– – – 3 µA

ILIL2 VIN = 0 V
XIN, XOUT, and XTIN

– – – 20

Output high
leakage
current

ILOH1 VOUT = VDD

All output pins
– – 3 µA

Output low
leakage
current

ILOL VOUT = 0 V

All output pins
– – – 3

KS57C2302/C2304/P2304 MICROCONTROLLER KS57P2304 OTP

15-5

Table 15-4. D.C. Electrical Characteristics (Continued)

(TA = – 40 °C to + 85 °C, VDD = 1.8 V to 5.5 V)

Parameter Symbol Conditions Min Typ Max Units

Pull-up
resistor

RL1 VIN = 0 V; VDD = 5 V

Ports 1, 2, 3, 6
25 50 100 KΩ

VDD = 3 V 50 100 200

RL2 VIN = 0 V; VDD = 5 V

RESET

100 250 400

VDD = 3 V 200 500 800

LCD voltage
dividing
resistor

RLCD
TA = 25 øC

100 150 200

COM output RCOM VDD = 5 V − 3 6

impedance VDD = 3 V 5 15

SEG output RSEG VDD = 5 V 3 6

impedance VDD = 3 V 5 15

COM output
voltage
deviation

VDC VDD = 5 V (VLC0-COMi)

Io = ± 15uA (i= 0-3)

– ± 45 ± 90 mV

SEG output
voltage
deviation

VDS VDD = 5 V (VLC0-SEGi)

Io = ± 15uA (i= 0-31)

– ñ 45 ñ 90 mV

VLC0 Output

voltage

VLC0 TA = 25 øC 0.6VDD

– 0.2
0.6VDD 0.6VDD

+ 0.2
V

VLC1 Output
voltage

VLC1 TA = 25 øC 0.4VDD

– 0.2
0.4VDD 0.4VDD

+ 0.2

VLC2 Output
voltage

VLC2 TA = 25 øC 0.2VDD

– 0.2
0.2VDD 0.2VDD

+ 0.2

KS57P2304 OTP KS57C2302/C2304/P2304 MICROCONTROLLER

15-6

Table 15-4. D.C. Electrical Characteristics (Concluded)

(TA = – 40 °C to + 85 °C, VDD = 1.8 V to 5.5 V)

Parameter Symbol Conditions Min Typ Max Units

Supply
Current (1)

IDD1 (2) Main operating:
VDD = 5 V ± 10%

CPU = fx/4
SCMOD = 0000B
Crystal oscillator
C1 = C2 = 22 pF

6.0 MHz
4.19 MHz

– 3.5
2.5

8
5.5

mA

VDD = 3 V ± 10% 6.0 MHz
4.19 MHz

1.6
1.2

4
3

IDD2 (2) Main idle mode;
VDD = 5 V ± 10%

CPU = fx/4
SCMOD =0000B
Crystal oscillator
C1 = C2 = 22 pF

6.0 MHz
4.19 MHz

– 1
0.9

2.5
2

VDD = 3 V ± 10% 6.0 MHz
4.19 MHz

0.5
0.4

1.0
0.8

IDD3 Sub operating:
VDD = 3 V ± 10%

CPU = fxt/4,
SCMOD = 1001B
32 kHz crystal oscillator

– 15 30 µA

IDD4 Sub idle mode:
VDD = 3 V ± 10%

CPU = fxt/4, SCMOD = 1001B
32 kHz crystal oscillator

– 6 15

IDD5 Stop mode:
VDD = 5V ± 10%
CPU=fxt/4, SCMOD = 1101B

IDD6
 (3) Stop mode:

VDD = 5 V ± 10%

CPU = fx/4, SCMOD = 0100B

– 0.5 3

NOTES:
1. D.C. electrical values for supply current (IDD1 to IDD6) do not include current drawn through internal pull-up resistors

 and through LCD voltage dividing resistors.
2. Data includes the power consumption for sub-system clock oscillation.
3. When the system clock mode register, SCMOD, is set to 0100B, the sub-system clock oscillation stops. The main-
 system clock oscillation stops by the STOP instruction.

KS57C2302/C2304/P2304 MICROCONTROLLER KS57P2304 OTP

15-7

CPU CLOCK = 1/n x oscillator frequency (n = 4, 8, 64)

1

 SUPPLY VOLTAGE (V)

250 kHz

500 kHz

15.6 kHz

CPU CLOCK

750 kHz

1.0475 MHz
1.5 MHz

2 3 4 5 6 7

Main OSC. Freq.

3 MHz

4.19 MHz
6 MHz

Figure 15-2. Standard Operating Voltage Range

KS57P2304 OTP KS57C2302/C2304/P2304 MICROCONTROLLER

15-8

(mA)

35.00

3.500/div

.0000
2.000

VOL (V)

IOL

VDD = 2.2 V

VDD = 3.3 V

VDD= 4.5 V

VDD = 5.5 V

.0000 .2000/div

Figure 15-3. Port 2 IOL vs VOL Curve

KS57C2302//C2304/P2304 MICROCONTROLLER DEVELOPMENT TOOLS

16-1

16 Development Tools

OVERVIEW

Samsung provides a powerful and easy-to-use development support system in turnkey form. The development
support system is configured with a host system, debugging tools, and support software. For the host system, any
standard computer that operates with MS-DOS as its operating system can be used. One type of debugging tool
including hardware and software is provided: the sophisticated and powerful in-circuit emulator, SMDS2+, for
KS57, KS86, KS88 families of microcontrollers. The SMDS2+ is a new and improved version of SMDS2.
Samsung also offers support software that includes debugger, assembler, and a program for setting options.

SHINE

Samsung Host Interface for In-Circuit Emulator, SHINE, is a multi-window based debugger for SMDS2+. SHINE
provides pull-down and pop-up menus, mouse support, function/hot keys, and context-sensitive hyper-linked
help. It has an advanced, multiple-windowed user interface that emphasizes ease of use. Each window can be
sized, moved, scrolled, highlighted, added, or removed completely.

SAMA ASSEMBLER

The Samsung Arrangeable Microcontroller (SAM) Assembler, SAMA, is a universal assembler, and generates
object code in standard hexadecimal format. Assembled program code includes the object code that is used for
ROM data and required SMDS program control data. To assemble programs, SAMA requires a source file and
an auxiliary definition (DEF) file with device specific information.

SASM57

The SASM57 is an relocatable assembler for Samsung's KS57-series microcontrollers. The SASM57 takes a
source file containing assembly language statements and translates into a corresponding source code, object
code and comments. The SASM57 supports macros and conditional assembly. It runs on the MS-DOS operating
system. It produces the relocatable object code only, so the user should link object file. Object files can be linked
with other object files and loaded into memory.

HEX2ROM

HEX2ROM file generates ROM code from HEX file which has been produced by assembler. ROM code must be
needed to fabricate a microcontroller which has a mask ROM. When generating the ROM code (.OBJ file) by
HEX2ROM, the value 'FF' is filled into the unused ROM area upto the maximum ROM size of the target device
automatically.

TARGET BOARDS

Target boards are available for all KS57-series microcontrollers. All required target system cables and adapters
are included with the device-specific target board.

OTPs

One time programmable microcontroller (OTP) for the KS57C2302/C2304 microcontroller and OTP programmer
(Gang) are now available.

DEVELOPMENT TOOLS KS57C2302//C2304/P2304 MICROCONTROLLER

16-2

RAM BREAK/ DISPLAY UNIT

TARGET
APPLICATION

SYSTEM

PROBE
ADAPTER

TB572302A/04A
TARGET
BOARD

PROM/MTP WRITER UNIT

TRACE/TIMER UNIT

SAM4 BASE UNIT

POWER SUPPLY UNIT

POD

RS-232C

IBM-PC AT or Compatible

B
U

S

SMDS2+

EVA
CHIP

Figure 16-1. SMDS Product Configuration (SMDS2+)

KS57C2302//C2304/P2304 MICROCONTROLLER DEVELOPMENT TOOLS

16-3

TB572302A/04A TARGET BOARD

The TB572302A/04A target board is used for the KS57C2302/C2304/P2304 microcontroller. It is supported by
the SMDS2+ development system.

SM1256A

TB572302A/04A

1

25

EXTERNAL
TRIGGERS

CH1

CH2

OFF ON

To User_Vcc

RESET

+

STOP

+

IDLE

10
0-

P
IN

C
O

N
N

E
C

T
O

R

4
0-

P
IN

 C
O

N
N

E
C

T
O

R

1 2

39 40

J101

144 QFP
KS57E2304
EVA CHIP

74HC11

4
0-

P
IN

 C
O

N
N

E
C

T
O

R

1 2

39 40

J102

B
IA

S

V
LC

0
V

LC
1

V
LC

2

1 3

M
D

S

X
T

A
L

XTI

M
D

S

X
T

A
L

XI

Figure 16-2. TB572302A/04A Target Board Configuration

DEVELOPMENT TOOLS KS57C2302//C2304/P2304 MICROCONTROLLER

16-4

Table 16-1. Power Selection Settings for TB572302A/04A

'To User_Vcc' Settings Operating Mode Comments

To User_Vcc

ONOFF

VCC

TARGET
SYSTEM

SMDS2/SMDS2+

VSS

VCC

TB572302A
/04A

The SMDS2/SMDS2+
supplies VCC to the target
board (evaluation chip) and
the target system.

To User_Vcc

ONOFF TARGET
SYSTEM

External
VCC

SMDS2/SMDS2+

VCC

VSS

TB572302A
/04A

The SMDS2/SMDS2+
supplies VCC only to the
target board (evaluation chip).
The target system must have
its own power supply.

Table 16-2. Main-clock Selection Settings for TB572302A/04A

Main Clock Setting Operating Mode Comments

XTAL MDS

XI

XIN

SMDS2/SMDS2+

EVA CHIP
KS57E2304

XOUT

No connection
100 pin connector

Set the XI switch to “MDS”
when the target board is
connected to the
SMDS2/SMDS2+.

XTAL MDS

XI

XIN

TARGET BOARD

EVA CHIP
KS57E2304

XOUT

XTAL

Set the XI switch to “XTAL”
when the target board is used
as a standalone unit, and is
not connected to the
SMDS2/SMDS2+.

KS57C2302//C2304/P2304 MICROCONTROLLER DEVELOPMENT TOOLS

16-5

Table 16-3. Sub-clock Selection Settings for TB572302A/04A

Sub Clock Setting Operating Mode Comments

XTAL MDS

XTI

XIN

SMDS2/SMDS2+

EVA CHIP
KS57E2304

XOUT

No connection
100 pin connector

Set the XTI switch to “MDS”
when the target board is
connected to the
SMDS2/SMDS2+.

XTAL MDS

XTI

XTIN

TARGET BOARD

EVA CHIP
KS57E2304

XTOUT

XTAL

Set the XTI switch to “XTAL”
when the target board is used
as a standalone unit, and is
not connected to the
SMDS2/SMDS2+.

Table 16-4. Using Single Header Pins as the Input Path for External Trigger Sources

Target Board Part Comments

EXTERNAL
TRIGGERS

CH1

CH2

Connector from
external trigger
sources of the
application system

You can connect an external trigger source to one of the two external
trigger channels (CH1 or CH2) for the SMDS2+ breakpoint and trace
functions.

IDLE LED

This LED is ON when the evaluation chip (KS57E2304) is in idle mode.

STOP LED

This LED is ON when the evaluation chip (KS57E2304) is in stop mode.

DEVELOPMENT TOOLS KS57C2302//C2304/P2304 MICROCONTROLLER

16-6

J101

4
0-P

IN
 D

IP
 C

O
N

N
E

C
T

O
R

COM0
COM2
BIAS
VLC1
VDD
Xout

TEST
XTout

P1.0/INT0
P1.2/INT2

P2.0/TCLO0
P2.2/CLO

P3.0/LCDCK
P3.2

P6.0/KS0
P6.2/KS2

NC
NC
NC
NC

COM1
COM3
VLC0
VLC2
VSS
Xin
XTin
RESET
P1.1/INT1
P1.3/TCL0
P2.1
P2.3/BUZ
P3.1/LCDSY
P3.3
P6.1/KS1
P6.3/KS3
NC
NC
NC
NC

1
3
5
7
9
11
13
15
17
19
21
23
25
27
29
31
33
35
37
39

2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40

J102

4
0-P

IN
 D

IP
 C

O
N

N
E

C
T

O
R

P8.7/SEG31
P8.5/SEG29
P8.3/SEG27
P8.1/SEG25

SEG23
SEG21
SEG19
SEG17
SEG15
SEG13
SEG11
SEG9
SEG7
SEG5
SEG3
SEG1

NC
NC
NC
NC

P8.6/SEG30
P8.4/SEG28
P8.2/SEG26
P8.0/SEG24
SEG22
SEG20
SEG18
SEG16
SEG14
SEG12
SEG10
SEG8
SEG6
SEG4
SEG2
SEG0
NC
NC
NC
NC

1
3
5
7
9
11
13
15
17
19
21
23
25
27
29
31
33
35
37
39

2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40

Figure 16-3. 40-Pin Connectors for TB572302A/04A

40-P
IN

 D
IP

 C
O

N
N

E
C

T
O

R
TARGET BOARD TARGET SYSTEM

Target Cable for 40 Pin Connector
Part Name: AS40D-A
Order Code: SM6306

J102

1 2

39 40

1 2

39 40

J101 J101J102

1 2

39 40

1 2

39 40

Figure 16-4. TB572302A/04A Adapter Cable for 64-QFP Package (KS57C2302/C2304/P2304)

(For duplicate copies of this form, and for additional ordering information, please contact your local
Samsung sales representative. Samsung sales offices are listed on the back cover of this book.)

KS57 SERIES MASK ROM ORDER FORM

Product description:

Device Number: KS57C__________- ___________(write down the ROM code number)

Product Order Form: Package Pellet Wafer Package Type: __________

Package Marking (Check One):

 Standard Custom A Custom B

(Max 10 chars) (Max 10 chars each line)

@ : Assembly site code, Y : Last number of assembly year, WW : Week of assembly

@ YWW
Device Name

SEC
Device Name

@ YWW @ YWW

Delivery Dates and Quantities:

Deliverable Required Delivery Date Quantity Comments

ROM code – Not applicable See ROM Selection Form

Customer sample

Risk order See Risk Order Sheet

Please answer the following questions:

++ For what kind of product will you be using this order?

 New product Upgrade of an existing product

 Replacement of an existing product Other

If you are replacing an existing product, please indicate the former product name
 ()

++ What are the main reasons you decided to use a Samsung microcontroller in your product?

Please check all that apply.

 Price Product quality Features and functions

 Development system Technical support Delivery on time

 Used same micom before Quality of documentation Samsung reputation

Mask Charge (US$ / Won): ____________________________

Customer Information:

Company Name: ___________________ Telephone number _________________________

Signatures: ________________________ __________________________________

(Person placing the order) (Technical Manager)

(For duplicate copies of this form, and for additional ordering information, please contact your local
Samsung sales representative. Samsung sales offices are listed on the back cover of this book.)

KS57 SERIES
REQUEST FOR PRODUCTION AT CUSTOMER RISK

Customer Information:

Company Name: __

Department: __

Telephone Number: __________________________ Fax: _____________________________

Date: __________________________

Risk Order Information:

Device Number: KS57C________- ________ (write down the ROM code number)

Package: Number of Pins: ____________ Package Type: _____________________

Intended Application: __

Product Model Number: __

Customer Risk Order Agreement:

We hereby request SEC to produce the above named product in the quantity stated below. We believe our risk
order product to be in full compliance with all SEC production specifications and, to this extent, agree to assume
responsibility for any and all production risks involved.

Order Quantity and Delivery Schedule:

Risk Order Quantity: _____________________ PCS

Delivery Schedule:

Delivery Date (s) Quantity Comments

Signatures: _______________________________ _______________________________________
(Person Placing the Risk Order) (SEC Sales Representative)

(For duplicate copies of this form, and for additional ordering information, please contact your local
Samsung sales representative. Samsung sales offices are listed on the back cover of this book.)

KS57C2302 MASK OPTION SELECTION FORM

Device Number: KS57C2302-__________(write down the ROM code number)

Attachment (Check one): Diskette PROM

Customer Checksum: __

Company Name: __

Signature (Engineer): __

Please answer the following questions:

++ Application (Product Model ID: _______________________)

 Audio Video Telecom

 LCD Databank Caller ID LCD Game

 Industrials Home Appliance Office Automation

 Remocon Other

Please describe in detail its application

(For duplicate copies of this form, and for additional ordering information, please contact your local
Samsung sales representative. Samsung sales offices are listed on the back cover of this book.)

KS57C2304 MASK OPTION SELECTION FORM

Device Number: KS57C2304-__________(write down the ROM code number)

Attachment (Check one): Diskette PROM

Customer Checksum: __

Company Name: __

Signature (Engineer): __

Please answer the following questions:

++ Application (Product Model ID: _______________________)

 Audio Video Telecom

 LCD Databank Caller ID LCD Game

 Industrials Home Appliance Office Automation

 Remocon Other

Please describe in detail its application

(For duplicate copies of this form, and for additional ordering information, please contact your local
Samsung sales representative. Samsung sales offices are listed on the back cover of this book.)

KS57 SERIES OTP FACTORY WRITING ORDER FORM (1/2)

Product Description:

Device Number: KS57P______-________(write down the ROM code number)

Product Order Form: Package Pellet Wafer

If the product order form is package: Package Type: _____________________

Package Marking (Check One):

 Standard Custom A Custom B

(Max 10 chars) (Max 10 chars each line)

@ : Assembly site code, Y : Last number of assembly year, WW : Week of assembly

@ YWW
Device Name

SEC
Device Name

@ YWW @ YWW

Delivery Dates and Quantity:

ROM Code Release Date Required Delivery Date of Device Quantity

Please answer the following questions:

++ What is the purpose of this order?

 New product development Upgrade of an existing product

 Replacement of an existing microcontroller Other

If you are replacing an existing microcontroller, please indicate the former microcontroller name

 ()

++ What are the main reasons you decided to use a Samsung microcontroller in your product?

Please check all that apply.

 Price Product quality Features and functions

 Development system Technical support Delivery on time

 Used same micom before Quality of documentation Samsung reputation

Customer Information:

Company Name: ___________________ Telephone number _________________________

Signatures: ________________________ __________________________________

(Person placing the order) (Technical Manager)

(For duplicate copies of this form, and for additional ordering information, please contact your local
Samsung sales representative. Samsung sales offices are listed on the back cover of this book.)

KS57P2304 OTP FACTORY WRITING ORDER FORM (2/2)

Device Number: KS57P2304-__________(write down the ROM code number)

Customer Checksums: ___

Company Name: __

Signature (Engineer): __

Read Protection(1): Yes No

Please answer the following questions:

++ Are you going to continue ordering this device?

 Yes No

If so, how much will you be ordering? _________________pcs

++ Application (Product Model ID: _______________________)

 Audio Video Telecom

 LCD Databank Caller ID LCD Game

 Industrials Home Appliance Office Automation

 Remocon Other

Please describe in detail its application

NOTES
1. Once you choose a read protection, you cannot read again the programming code from the EPROM.
2. OTP Writing will be executed in our manufacturing site.
3. The writing program is completely verified by a customer. Samsung does not take on any
 responsibility for errors occurred from the writing program.

